ترغب بنشر مسار تعليمي؟ اضغط هنا

Signed Mahonian on Parabolic Quotients of Colored Permutation Groups

100   0   0.0 ( 0 )
 نشر من قبل Yuan-Hsun Lo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the generating polynomial of the flag major index with each one-dimensional character, called signed Mahonian polynomial, over the colored permutation group, the wreath product of a cyclic group with the symmetric group. Using the insertion lemma of Han and Haglund-Loehr-Remmel and a signed extension established by Eu et al., we derive the signed Mahonian polynomial over the quotients of parabolic subgroups of the colored permutation group, for a variety of systems of coset representatives in terms of subsequence restrictions. This generalizes the related work over parabolic quotients of the symmetric group due to Caselli as well as to Eu et al. As a byproduct, we derive a product formula that generalizes Biagiolis result about the signed Mahonian on the even signed permutation groups.



قيم البحث

اقرأ أيضاً

We define an excedance number for the multi-colored permutation group, i.e. the wreath product of Z_{r_1} x ... x Z_{r_k} with S_n, and calculate its multi-distribution with some natural parameters. We also compute the multi-distribution of the par ameters exc(pi) and fix(pi) over the sets of involutions in the multi-colored permutation group. Using this, we count the number of involutions in this group having a fixed number of excedances and absolute fixed points.
A relationship between signed Eulerian polynomials and the classical Eulerian polynomials on $mathfrak{S}_n$ was given by D{e}sarm{e}nien and Foata in 1992, and a refined version, called signed Euler-Mahonian identity, together with a bijective proof were proposed by Wachs in the same year. By generalizing this bijection, in this paper we extend the above results to the Coxeter groups of types $B_n$, $D_n$, and the complex reflection group $G(r,1,n)$, where the `sign is taken to be any one-dimensional character. Some obtained identities can be further restricted on some particular set of permutations. We also derive some new interesting sign-balance polynomials for types $B_n$ and $D_n$.
Affine Weyl groups and their parabolic quotients are used extensively as indexing sets for objects in combinatorics, representation theory, algebraic geometry, and number theory. Moreover, in the classical Lie types we can conveniently realize the el ements of these quotients via intuitive geometric and combinatorial models such as abaci, alcoves, coroot lattice points, core partitions, and bounded partitions. Berg, Jones, and Vazirani described a bijection between n-cores with first part equal to k and (n-1)-cores with first part less than or equal to k, and they interpret this bijection in terms of these other combinatorial models for the quotient of the affine symmetric group by the finite symmetric group. In this paper we discuss how to generalize the bijection of Berg-Jones-Vazirani to parabolic quotients of affine Weyl groups in type C. We develop techniques using the associated affine hyperplane arrangement to interpret this bijection geometrically as a projection of alcoves onto the hyperplane containing their coroot lattice points. We are thereby able to analyze this bijective projection in the language of various additional combinatorial models developed by Hanusa and Jones, such as abaci, core partitions, and canonical reduced expressions in the Coxeter group.
In 1997 Clarke et al. studied a $q$-analogue of Eulers difference table for $n!$ using a key bijection $Psi$ on symmetric groups. In this paper we extend their results to the wreath product of a cyclic group with the symmetric group. In particular we obtain a new mahonian statistic emph{fmaf} on wreath products. We also show that Foata and Hans two recent transformations on the symmetric groups provide indeed a factorization of $Psi$.
121 - Tomoyuki Tamura 2017
In this paper, we define a set which has a finite group action and is generated by a finite color set, a set which has a finite group action, and a subset of the set of non negative integers. we state its properties to apply one of solution of the fo llowing two problems, respectively. First, we calculate the generating function of the character of symmetric powers of permutation representation associated with a set which has a finite group action. Second, we calculate the number of primitive colorings on some objects of polyhedrons. It is a generalization of the calculation of the number of primitive necklaces by N.Metropolis and G-C.Rota.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا