ترغب بنشر مسار تعليمي؟ اضغط هنا

Gibbs Sampling with People

100   0   0.0 ( 0 )
 نشر من قبل Peter Harrison
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

A core problem in cognitive science and machine learning is to understand how humans derive semantic representations from perceptual objects, such as color from an apple, pleasantness from a musical chord, or seriousness from a face. Markov Chain Monte Carlo with People (MCMCP) is a prominent method for studying such representations, in which participants are presented with binary choice trials constructed such that the decisions follow a Markov Chain Monte Carlo acceptance rule. However, while MCMCP has strong asymptotic properties, its binary choice paradigm generates relatively little information per trial, and its local proposal function makes it slow to explore the parameter space and find the modes of the distribution. Here we therefore generalize MCMCP to a continuous-sampling paradigm, where in each iteration the participant uses a slider to continuously manipulate a single stimulus dimension to optimize a given criterion such as pleasantness. We formulate both methods from a utility-theory perspective, and show that the new method can be interpreted as Gibbs Sampling with People (GSP). Further, we introduce an aggregation parameter to the transition step, and show that this parameter can be manipulated to flexibly shift between Gibbs sampling and deterministic optimization. In an initial study, we show GSP clearly outperforming MCMCP; we then show that GSP provides novel and interpretable results in three other domains, namely musical chords, vocal emotions, and faces. We validate these results through large-scale perceptual rating experiments. The final experiments use GSP to navigate the latent space of a state-of-the-art image synthesis network (StyleGAN), a promising approach for applying GSP to high-dimensional perceptual spaces. We conclude by discussing future cognitive applications and ethical implications.



قيم البحث

اقرأ أيضاً

Deep neural networks (DNNs) transform stimuli across multiple processing stages to produce representations that can be used to solve complex tasks, such as object recognition in images. However, a full understanding of how they achieve this remains e lusive. The complexity of biological neural networks substantially exceeds the complexity of DNNs, making it even more challenging to understand the representations that they learn. Thus, both machine learning and computational neuroscience are faced with a shared challenge: how can we analyze their representations in order to understand how they solve complex tasks? We review how data-analysis concepts and techniques developed by computational neuroscientists can be useful for analyzing representations in DNNs, and in turn, how recently developed techniques for analysis of DNNs can be useful for understanding representations in biological neural networks. We explore opportunities for synergy between the two fields, such as the use of DNNs as in-silico model systems for neuroscience, and how this synergy can lead to new hypotheses about the operating principles of biological neural networks.
Scholars have recently drawn attention to a range of controversial issues posed by the use of computer vision for automatically generating descriptions of people in images. Despite these concerns, automated image description has become an important t ool to ensure equitable access to information for blind and low vision people. In this paper, we investigate the ethical dilemmas faced by companies that have adopted the use of computer vision for producing alt text: textual descriptions of images for blind and low vision people, We use Facebooks automatic alt text tool as our primary case study. First, we analyze the policies that Facebook has adopted with respect to identity categories, such as race, gender, age, etc., and the companys decisions about whether to present these terms in alt text. We then describe an alternative -- and manual -- approach practiced in the museum community, focusing on how museums determine what to include in alt text descriptions of cultural artifacts. We compare these policies, using notable points of contrast to develop an analytic framework that characterizes the particular apprehensions behind these policy choices. We conclude by considering two strategies that seem to sidestep some of these concerns, finding that there are no easy ways to avoid the normative dilemmas posed by the use of computer vision to automate alt text.
The recent success of brain-inspired deep neural networks (DNNs) in solving complex, high-level visual tasks has led to rising expectations for their potential to match the human visual system. However, DNNs exhibit idiosyncrasies that suggest their visual representation and processing might be substantially different from human vision. One limitation of DNNs is that they are vulnerable to adversarial examples, input images on which subtle, carefully designed noises are added to fool a machine classifier. The robustness of the human visual system against adversarial examples is potentially of great importance as it could uncover a key mechanistic feature that machine vision is yet to incorporate. In this study, we compare the visual representations of white- and black-box adversarial examples in DNNs and humans by leveraging functional magnetic resonance imaging (fMRI). We find a small but significant difference in representation patterns for different (i.e. white- versus black- box) types of adversarial examples for both humans and DNNs. However, human performance on categorical judgment is not degraded by noise regardless of the type unlike DNN. These results suggest that adversarial examples may be differentially represented in the human visual system, but unable to affect the perceptual experience.
Object-based attention is a key component of the visual system, relevant for perception, learning, and memory. Neurons tuned to features of attended objects tend to be more active than those associated with non-attended objects. There is a rich set o f models of this phenomenon in computational neuroscience. However, there is currently a divide between models that successfully match physiological data but can only deal with extremely simple problems and models of attention used in computer vision. For example, attention in the brain is known to depend on top-down processing, whereas self-attention in deep learning does not. Here, we propose an artificial neural network model of object-based attention that captures the way in which attention is both top-down and recurrent. Our attention model works well both on simple test stimuli, such as those using images of handwritten digits, and on more complex stimuli, such as natural images drawn from the COCO dataset. We find that our model replicates a range of findings from neuroscience, including attention-invariant tuning, inhibition of return, and attention-mediated scaling of activity. Understanding object based attention is both computationally interesting and a key problem for computational neuroscience.
67 - Fei Tang , Michael Kopp 2021
In their recent paper titled Large Associative Memory Problem in Neurobiology and Machine Learning [arXiv:2008.06996] the authors gave a biologically plausible microscopic theory from which one can recover many dense associative memory models discuss ed in the literature. We show that the layers of the recent MLP-mixer [arXiv:2105.01601] as well as the essentially equivalent model in [arXiv:2105.02723] are amongst them.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا