ﻻ يوجد ملخص باللغة العربية
Retrograde-propagating waves of vertical vorticity with longitudinal wavenumbers between 3 and 15 have been observed on the Sun with a dispersion relation close to that of classical sectoral Rossby waves. The observed vorticity eigenfunctions are symmetric in latitude, peak at the equator, switch sign near $20^circ$-$30^circ$, and decrease at higher latitudes. We search for an explanation that takes into account solar latitudinal differential rotation. In the equatorial $beta$ plane, we study the propagation of linear Rossby waves (phase speed $c <0$) in a parabolic zonal shear flow, $U = - overline{U} xi^2<0$, where $overline{U} = 244$ m/s and $xi$ is the sine of latitude. In the inviscid case, the eigenvalue spectrum is real and continuous and the velocity stream functions are singular at the critical latitudes where $U = c$. We add eddy viscosity in the problem to account for wave attenuation. In the viscous case, the stream functions are solution of a fourth-order modified Orr-Sommerfeld equation. Eigenvalues are complex and discrete. For reasonable values of the eddy viscosity corresponding to supergranular scales and above (Reynolds number $100 le Re le 700$), all modes are stable. At fixed longitudinal wavenumber, the least damped mode is a symmetric mode with a real frequency close to that of the classical Rossby mode, which we call the R mode. For $Re approx 300$, the attenuation and the real part of the eigenfunction is in qualitative agreement with the observations (unlike the imaginary part of the eigenfunction, which has a larger amplitude in the model. Conclusion: Each longitudinal wavenumber is associated with a latitudinally symmetric R mode trapped at low latitudes by solar differential rotation. In the viscous model, R modes transport significant angular momentum from the dissipation layers towards the equator.
Asteroseismology has undergone a profound transformation as a scientific field following the CoRoT and Kepler space missions. The latter is now yielding the first measurements of latitudinal differential rotation obtained directly from oscillation fr
Floquet theory is used to describe the unstable spectrum at large scales of the beta-plane equation linearized about Rossby waves. Base flows consisting of one to three Rossby wave are considered analytically using continued fractions and the method
The differentially rotating outer layers of stars are thought to play a role in driving their magnetic activity, but the underlying mechanisms that generate and sustain differential rotation are poorly understood. We report the measurement of latitud
We studied the solar surface flows (differential rotation and meridional circulation) using a magnetic element feature tracking technique by which the surface velocity is obtained using magnetic field data. We used the line-of-sight magnetograms obta
Annual oscillations have been detected in many indices of solar activity during many cycles. Recent multi spacecraft observations of coronal bright points revealed slow retrograde toroidal phase drift (with the speed of 3 m/s of 1 yr oscillations, wh