ترغب بنشر مسار تعليمي؟ اضغط هنا

More Than Accuracy: Towards Trustworthy Machine Learning Interfaces for Object Recognition

50   0   0.0 ( 0 )
 نشر من قبل Hendrik Heuer
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates the user experience of visualizations of a machine learning (ML) system that recognizes objects in images. This is important since even good systems can fail in unexpected ways as misclassifications on photo-sharing websites showed. In our study, we exposed users with a background in ML to three visualizations of three systems with different levels of accuracy. In interviews, we explored how the visualization helped users assess the accuracy of systems in use and how the visualization and the accuracy of the system affected trust and reliance. We found that participants do not only focus on accuracy when assessing ML systems. They also take the perceived plausibility and severity of misclassification into account and prefer seeing the probability of predictions. Semantically plausible errors are judged as less severe than errors that are implausible, which means that system accuracy could be communicated through the types of errors.



قيم البحث

اقرأ أيضاً

Human activity recognition plays an increasingly important role not only in our daily lives, but also in the medical and rehabilitation fields. The development of deep learning has also contributed to the advancement of human activity recognition, bu t the large amount of data annotation work required to train deep learning models is a major obstacle to the development of human activity recognition. Contrastive learning has started to be used in the field of sensor-based human activity recognition due to its ability to avoid the cost of labeling large datasets and its ability to better distinguish between sample representations of different instances. Among them, data augmentation, an important part of contrast learning, has a significant impact on model effectiveness, but current data augmentation methods do not perform too successfully in contrast learning frameworks for wearable sensor-based activity recognition. To optimize the effect of contrast learning models, in this paper, we investigate the sampling frequency of sensors and propose a resampling data augmentation method. In addition, we also propose a contrast learning framework based on human activity recognition and apply the resampling augmentation method to the data augmentation phase of contrast learning. The experimental results show that the resampling augmentation method outperforms supervised learning by 9.88% on UCI HAR and 7.69% on Motion Sensor in the fine-tuning evaluation of contrast learning with a small amount of labeled data, and also reveal that not all data augmentation methods will have positive effects in the contrast learning framework. Finally, we explored the influence of the combination of different augmentation methods on contrastive learning, and the experimental results showed that the effect of most combination augmentation methods was better than that of single augmentation.
Utilizing Visualization-oriented Natural Language Interfaces (V-NLI) as a complementary input modality to direct manipulation for visual analytics can provide an engaging user experience. It enables users to focus on their tasks rather than worrying about operating the interface to visualization tools. In the past two decades, leveraging advanced natural language processing technologies, numerous V-NLI systems have been developed both within academic research and commercial software, especially in recent years. In this article, we conduct a comprehensive review of the existing V-NLIs. In order to classify each paper, we develop categorical dimensions based on a classic information visualization pipeline with the extension of a V-NLI layer. The following seven stages are used: query understanding, data transformation, visual mapping, view transformation, human interaction, context management, and presentation. Finally, we also shed light on several promising directions for future work in the community.
Objective: Participation in a physical therapy program is considered one of the greatest predictors of successful conservative management of common shoulder disorders. However, adherence to these protocols is often poor and typically worse for unsupe rvised home exercise programs. Currently, there are limited tools available for objective measurement of adherence in the home setting. The goal of this study was to develop and evaluate the potential for performing home shoulder physiotherapy monitoring using a commercial smartwatch. Approach: Twenty healthy adult subjects with no prior shoulder disorders performed seven exercises from an evidence-based rotator cuff physiotherapy protocol, while 6-axis inertial sensor data was collected from the active extremity. Within an activity recognition chain (ARC) framework, four supervised learning algorithms were trained and optimized to classify the exercises: k-nearest neighbor (k-NN), random forest (RF), support vector machine classifier (SVC), and a convolutional recurrent neural network (CRNN). Algorithm performance was evaluated using 5-fold cross-validation stratified first temporally and then by subject. Main Results: Categorical classification accuracy was above 94% for all algorithms on the temporally stratified cross validation, with the best performance achieved by the CRNN algorithm (99.4%). The subject stratified cross validation, which evaluated classifier performance on unseen subjects, yielded lower accuracies scores again with CRNN performing best (88.9%). Significance: This proof of concept study demonstrates the technical feasibility of a smartwatch device and supervised machine learning approach to more easily monitor and assess the at-home adherence of shoulder physiotherapy exercise protocols.
In the field of machine learning there is a growing interest towards more robust and generalizable algorithms. This is for example important to bridge the gap between the environment in which the training data was collected and the environment where the algorithm is deployed. Machine learning algorithms have increasingly been shown to excel in finding patterns and correlations from data. Determining the consistency of these patterns and for example the distinction between causal correlations and nonsensical spurious relations has proven to be much more difficult. In this paper a regularization scheme is introduced that prefers universal causal correlations. This approach is based on 1) the robustness of causal correlations and 2) the data not being independently and identically distribute (i.i.d.). The scheme is demonstrated with a classification task by clustering the (non-i.i.d.) training set in subpopulations. A non-i.i.d. regularization term is then introduced that penalizes weights that are not invariant over these clusters. The resulting algorithm favours correlations that are universal over the subpopulations and indeed a better performance is obtained on an out-of-distribution test set with respect to a more conventional l_2-regularization.
Confocal histology provides an opportunity to establish intra-voxel fiber orientation distributions that can be used to quantitatively assess the biological relevance of diffusion weighted MRI models, e.g., constrained spherical deconvolution (CSD). Here, we apply deep learning to investigate the potential of single shell diffusion weighted MRI to explain histologically observed fiber orientation distributions (FOD) and compare the derived deep learning model with a leading CSD approach. This study (1) demonstrates that there exists additional information in the diffusion signal that is not currently exploited by CSD, and (2) provides an illustrative data-driven model that makes use of this information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا