ﻻ يوجد ملخص باللغة العربية
Semiconductors with strong spin-orbit interactions can exhibit a helical gap with spin-momentum locking opened by a magnetic field. Such a gap is highly spin selective as a result of a topologically protected spin-momentum locking, which can be used for spin filtering. We experimentally demonstrate such a spin filtering effect in a quasi-ballistic p-type germanium/silicon core/shell nanowire (NW), which possesses a pseudo-helical gap without the application of magnetic field. Polarized hole spin injection to the NW is achieved using cobalt ferromagnetic contacts with controlled natural surface oxide on the NW as a tunnel barrier. Local and nonlocal spin valve effects are measured as the verification of polarized spin transport in the NW outside the helical gap. We electrically tune the NW into the helical gap by scanning its chemical potential with a gate. A hysteresis loop with three resistance states is observed in the local spin valve geometry, as an evidence of spin filtering in the helical gap.
Core-shell nanowires made of Si and Ge can be grown experimentally with excellent control for different sizes of both core and shell. We have studied the structural properties of Si/Ge and Ge/Si core-shell nanowires aligned along the $[110]$ directio
The spin-orbit coupling (SOC) in semiconductors is strongly influenced by structural asymmetries, as prominently observed in bulk crystal structures that lack inversion symmetry. Here, we study an additional effect on the SOC: the asymmetry induced b
The strain configuration induced by the lattice mismatch in a core-shell nanowire is calculated analytically, taking into account the crystal anisotropy and the difference in stiffness constants of the two materials. The method is applied to nanowire
Coupling a normal metal wire to a superconductor induces an excitation gap in the normal metal. In the absence of disorder, the induced excitation gap is strongly suppressed by finite-size effects if the thickness of the superconductor is much smalle
We study theoretically the low-energy phonons and the static strain in cylindrical core/shell nanowires (NWs). Assuming pseudomorphic growth, isotropic media, and a force-free wire surface, we derive algebraic expressions for the dispersion relations