ﻻ يوجد ملخص باللغة العربية
The existence and multiplicity of solutions for a class of non-local elliptic boundary value problems with superlinear source functions are investigated in this paper. Using variational methods, we examine the changes arise in the solution behaviours as a result of the non-local effect. Comparisons are made of the results here with those of the elliptic boundary value problem in the absence of the non-local term under the same prescribed conditions to highlight this effect of non-locality on the solution behaviours. Our results here demonstrate that the complexity of the solution structures is significantly increased in the presence of the non-local effect with the possibility ranging from no permissible positive solution to three positive solutions and, contrary to those obtained in the absence of the non-local term, the solution profiles also vary depending on the superlinearity of the source functions.
In this paper we shall classify all positive solutions of $ Delta u =a u^p$ on the upper half space $ H =Bbb{R}_+^n$ with nonlinear boundary condition $ {partial u}/{partial t}= - b u^q $ on $partial H$ for both positive parameters $a, b>0$. We will
In this paper, we study existence of boundary blow-up solutions for elliptic equations involving regional fractional Laplacian. We also discuss the optimality of our results.
This paper is a contribution to the study of regularity theory for nonlinear elliptic equations. The aim of this paper is to establish some global estimates for non-uniformly elliptic in divergence form as follows begin{align*} -mathrm{div}(| abla u|
This paper is focused on the local interior $W^{1,infty}$-regularity for weak solutions of degenerate elliptic equations of the form $text{div}[mathbf{a}(x,u, abla u)] +b(x, u, abla u) =0$, which include those of $p$-Laplacian type. We derive an ex
We study the Cauchy problem for the generalized elliptic and non-elliptic derivative nonlinear Schrodinger equations, the existence of the scattering operators and the global well posedness of solutions with small data in Besov spaces and in modulati