ﻻ يوجد ملخص باللغة العربية
Eternal inflation requires upward fluctuations of the energy in a Hubble volume, which appear to violate the energy conditions. In particular, a scalar field in an inflating spacetime should obey the averaged null energy condition, which seems to rule out eternal inflation. Here we show how eternal inflation is possible when energy conditions (even the null energy condition) are obeyed. The critical point is that energy conditions restrict the evolution of any single quantum state, while the process of eternal inflation involves repeatedly selecting a subsector of the previous state, so there is no single state where the conditions are violated.
Eternal inflation, the idea that there is always a part of the universe that is expanding exponentially, is a frequent feature of inflationary models. It has been argued that eternal inflation requires the violation of energy conditions, creating dou
The much-discussed swampland conjectures suggest significant constraints on the properties of string theory landscape and on the nature of the multiverse that this landscape can support. The conjectures are especially constraining for models of infla
Dynamics of eternal inflation on the landscape admits description in terms of the Martin-Siggia-Rose (MSR) effective field theory that is in one-to-one correspondence with vacuum dynamics equations. On those sectors of the landscape, where transport
We present an interpretation of the physics of space-times undergoing eternal inflation by repeated nucleation of bubbles. In many cases the physics can be interpreted in terms of the quantum mechanics of a system with a finite number of states. If t
We examine the class of initial conditions which give rise to inflation. Our analysis is carried out for several popular models including: Higgs inflation, Starobinsky inflation, chaotic inflation, axion monodromy inflation and non-canonical inflatio