ﻻ يوجد ملخص باللغة العربية
vant Hoff equation relates equilibrium constant $K$ of a chemical reaction to temperature $T$. Though the vant Hoff plot ($ln K$ vs $1/T$) is linear, it is nonlinear for certain chemical reactions. In this work we attribute such observations to virial coefficients.
We develop a thermodynamic framework for closed and open chemical networks applicable to non-elementary reactions that do not need to obey mass action kinetics. It only requires the knowledge of the kinetics and of the standard chemical potentials, a
Homochirality, i.e. the dominance across all living matter of one enantiomer over the other among chiral molecules, is thought to be a key step in the emergence of life. Building on ideas put forward by Frank and many others, we proposed recently one
In this paper, we generally expressed the virial expansion of ideal quantum gases by the heat kernel coefficients for the corresponding Laplace type operator. As examples, we give the virial coefficients for quantum gases in $d$-dimensional confined
Life has most likely originated as a consequence of processes taking place in non-equilibrium conditions (textit{e.g.} in the proximity of deep-sea thermal vents) selecting states of matter that would have been otherwise unfavorable at equilibrium. H
We study the virial coefficients B_k of hard spheres in D dimensions by means of Monte-Carlo integration. We find that B_5 is positive in all dimensions but that B_6 is negative for all D >= 6. For 7<=k<=17 we compute sets of Ree-Hoover diagrams and