ﻻ يوجد ملخص باللغة العربية
In this work we build a stack of machine learning models aimed at composing a state-of-the-art credit rating and default prediction system, obtaining excellent out-of-sample performances. Our approach is an excursion through the most recent ML / AI concepts, starting from natural language processes (NLP) applied to economic sectors (textual) descriptions using embedding and autoencoders (AE), going through the classification of defaultable firms on the base of a wide range of economic features using gradient boosting machines (GBM) and calibrating their probabilities paying due attention to the treatment of unbalanced samples. Finally we assign credit ratings through genetic algorithms (differential evolution, DE). Model interpretability is achieved by implementing recent techniques such as SHAP and LIME, which explain predictions locally in features space.
One of the key elements in the banking industry rely on the appropriate selection of customers. In order to manage credit risk, banks dedicate special efforts in order to classify customers according to their risk. The usual decision making process c
In this paper, we propose a methodology based on piece-wise homogeneous Markov chain for credit ratings and a multivariate model of the credit spreads to evaluate the financial risk in European Union (EU). Two main aspects are considered: how the fin
The granting process of all credit institutions rejects applicants who seem risky regarding the repayment of their debt. A credit score is calculated and associated with a cut-off value beneath which an applicant is rejected. Developing a new score i
Recently, incomplete-market techniques have been used to develop a model applicable to credit default swaps (CDSs) with results obtained that are quite different from those obtained using the market-standard model. This article makes use of the new i
This work introduces a number of algebraic topology approaches, such as multicomponent persistent homology, multi-level persistent homology and electrostatic persistence for the representation, characterization, and description of small molecules and