ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative comparison of magnon transport experiments in three-terminal YIG/Pt nanostructures acquired via dc and ac detection techniques

173   0   0.0 ( 0 )
 نشر من قبل Janine G\\\"uckelhorn
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

All-electrical generation and detection of pure spin currents is a promising way towards controlling the diffusive magnon transport in magnetically ordered insulators. We quantitatively compare two measurement schemes, which allow to measure the magnon spin transport in a three-terminal device based on a yttrium iron garnet thin film. We demonstrate that the dc charge current method based on the current reversal technique and the ac charge current method utilizing first and second harmonic lock-in detection can both efficiently distinguish between electrically and thermally injected magnons. In addition, both measurement schemes allow to investigate the modulation of magnon transport induced by an additional dc charge current applied to the center modulator strip. However, while at low modulator charge current both schemes yield identical results, we find clear differences above a certain threshold current. This difference originates from nonlinear effects of the modulator current on the magnon conductance.



قيم البحث

اقرأ أيضاً

Boolean logic is the foundation of modern digital information processing. Recently, there has been a growing interest in phenomena based on pure spin currents, which allow to move from charge to spin based logic gates. We study a proof-of-principle l ogic device based on the ferrimagnetic insulator Yttrium Iron Garnet (YIG), with Pt strips acting as injectors and detectors for nonequilibrium magnons. We experimentally observe incoherent superposition of magnons generated by different injectors. This allows to implement a fully functional majority gate, enabling multiple logic operations (AND and OR) in one and the same device. Clocking frequencies of the order of several GHz and straightforward down-scaling make our device promising for applications.
In this work we investigated thin films of the ferrimagnetic insulators YIG and NFO capped with thin Pt layers in terms of the longitudinal spin Seebeck effect (LSSE). The electric response detected in the Pt layer under an out-of-plane temperature g radient can be interpreted as a pure spin current converted into a charge current via the inverse spin Hall effect. Typically, the transverse voltage is the quantity investigated in LSSE measurements (in the range of mu V). Here, we present the directly detected DC current (in the range of nA) as an alternative quantity. Furthermore, we investigate the resistance of the Pt layer in the LSSE configuration. We found an influence of the test current on the resistance. The typical shape of the LSSE curve varies for increasing test currents.
118 - B.Madon , Do Ch. Pham , D. Lacour 2014
The Righi-Leduc effect refers to the thermal analogue of the Hall effect, for which the electric current is replaced by the heat current and the electric field by the temperature gradient. In both cases, the magnetic field generates a transverse forc e that deviates the carriers (electron, phonon, magnon) in the direction perpendicular to the current. In a ferromagnet, the magnetization plays the role of the magnetic field, and the corresponding effect is called anomalous Hall effect. Furthermore, a second transverse contribution due to the anisotropy, the planar Hall effect, is superimposed to the anomalous Hall effect. We report experimental evidence of the thermal counterpart of the Hall effects in ferromagnets, namely the magnon Hall effect (or equivalently the anomalous Righi-Leduc effect) and the planar Righi-Leduc effect, measured on ferromagnets that are either electrical conductor (NiFe) or insulator (YIG). The study shows the universal character of these new thermokinetic effects, related to the intrinsic chirality of the anisotropic ferromagnetic degrees of freedom.
We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characte ristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [1]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.
Spin Hall magnetoresistance (SMR) and magnon excitation magnetoresistance (MMR) that all generate via the spin Hall effect and inverse spin Hall effect in a nonmagnetic material are always related to each other. However, the influence of magnon excit ation for SMR is often overlooked due to the negligible MMR. Here, we investigate the SMR in Pt/Y3Fe5O12 (YIG) bilayers from 5 to 300K, in which the YIG are treated after Ar+-ion milling. The SMR in the treated device is smaller than in the non-treated. According to theoretical simulation, we attribute this phenomenon to the reduction of the interfacial spin-mixing conductance at the treated Pt/YIG interface induced by the magnon suppression. Our experimental results point out that the SMR and the MMR are inter-connected, and the former could be modulated via magnon excitation. Our findings provide a new approach for separating and clarifying the underlying mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا