Feature-preserving mesh denoising has received noticeable attention recently. Many methods often design great weighting for anisotropic surfaces and small weighting for isotropic surfaces, to preserve sharp features. However, they often disregard the fact that small weights still pose negative impacts to the denoising outcomes. Furthermore, it may increase the difficulty in parameter tuning, especially for users without any background knowledge. In this paper, we propose a novel clustering method for mesh denoising, which can avoid the disturbance of anisotropic information and be easily embedded into commonly-used mesh denoising frameworks. Extensive experiments have been conducted to validate our method, and demonstrate that it can enhance the denoising results of some existing methods remarkably both visually and quantitatively. It also largely relaxes the parameter tuning procedure for users, in terms of increasing stability for existing mesh denoising methods.