ﻻ يوجد ملخص باللغة العربية
Given the established 2 alpha structure of 8Be, a realistic model of 4 interacting alpha clusters must be used to obtain a 8Be+8Be interaction potential. Such a four-body problem poses a challenge for the determination of the 8Be+8Be optical potential (OP) that is still unknown due to the lack of the elastic 8Be+8Be scattering data. The main goal of the present study is to probe the complex 8Be+8Be optical potential in the coupled reaction channel (CRC) study of the alpha transfer 12C(alpha,8Be) reaction measured at 65 MeV, and to obtain the spectroscopic information on the alpha+8Be cluster configuration of 12C. The 3- and 4-body Continuum-Discretized Coupled Channel (CDCC) methods are used to calculate the elastic alpha+8Be and 8Be+8Be scattering at the energy around 16 MeV/nucleon, with the breakup effect taken into account explicitly. Using the CDCC-based OP and alpha spectroscopic factors given by the cluster model calculation, a good CRC description of the alpha transfer data without any adjustment of the (complex) potential strength.
The possible occurence of highly deformed configurations in the $^{40}$Ca di-nuclear system formed in the $^{28}$Si + $^{12}$C reaction is investigated by analyzing the spectra of emitted light charged particles. Both inclusive and exclusive measurem
A $6.8,sigma$ anomaly has been reported in the opening angle and invariant mass distributions of $e^+e^-$ pairs produced in ${^8Be}$ nuclear transitions. It has been shown that a protophobic fifth force mediated by a $17,textrm{MeV}$ gauge boson $X$
We apply tensor version of antisymmetrized quasi cluster model (AQCM-T) to 4He and 8Be while focusing on the NN correlations in alpha clusters. We adopt the NN interactions including realistic ones containing a repulsive core for the central part in
A significant decay branch of 8B to the ground state of 8Be would extend the solar neutrino spectrum to higher energies than anticipated in the standard solar models. These high-energy neutrinos would affect current neutrino oscillation results and a
In the present work, we report our in depth study of 12C(p,pgamma)12C reaction both experimentally and theoretically with proton beam energy ranging from 8 MeV to 22 MeV. The angular distributions were measured at six different angles. We discuss the