Recently a novel hadronic state of mass 6.9 GeV, that decays mainly to a pair of charmonia, was observed in LHCb. The data also reveals a broader structure centered around 6490 MeV and suggests another unconfirmed resonance centered at around 7240 MeV, very near to the threshold of two doubly charmed $Xi_{cc}$ baryons. We argue in this note that these exotic hadrons are genuine tetraquarks and not molecules of charmonia. It is conjectured that they are V-baryonium tetraquarks, namely, have an inner structure of a baryonic vertex with a $cc$ diquark attached to it, which is connected by a string to an anti-baryonic vertex with a $bar c bar c$ anti-diquark. We examine these states as the analogs of the states $Psi(4360)$ and $Y(4630)$/$Psi(4660)$ which are charmonium-like tetraquarks. One way to test these claims is by searching for a significant decay of the state at 7.2 GeV into $Xi_{cc}overlineXi_{cc}$. Such a decay would be the analog of the decay of the state $Y(4630)$ into to $Lambda_coverlineLambda_c$. We further argue that there should be trajectories of both orbital and radial excited states of the $X(6900)$. We predict their masses. It is possible that a few of these states have already been seen by LHCb.