ترغب بنشر مسار تعليمي؟ اضغط هنا

Lyman-$alpha$ Constraints on Cosmic Heating from Dark Matter Annihilation and Decay

420   0   0.0 ( 0 )
 نشر من قبل Gregory Ridgway
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive new constraints on models of decaying and annihilating dark matter (DM) by requiring that the energy injected into the intergalactic medium (IGM) not overheat it at late times, when measurements of the Lyman-$alpha$ forest constrain the IGM temperature. We improve upon previous analyses by using the recently developed $texttt{DarkHistory}$ code package, which self-consistently takes into account additional photoionization and photoheating processes due to reionization and DM sources. Our constraints are robust to the uncertainties of reionization and competitive with leading limits on sub-GeV DM that decays preferentially to electrons.



قيم البحث

اقرأ أيضاً

We present constraints on the masses of extremely light bosons dubbed fuzzy dark matter from Lyman-$alpha$ forest data. Extremely light bosons with a De Broglie wavelength of $sim 1$ kpc have been suggested as dark matter candidates that may resolve some of the current small scale problems of the cold dark matter model. For the first time we use hydrodynamical simulations to model the Lyman-$alpha$ flux power spectrum in these models and compare with the observed flux power spectrum from two different data sets: the XQ-100 and HIRES/MIKE quasar spectra samples. After marginalization over nuisance and physical parameters and with conservative assumptions for the thermal history of the IGM that allow for jumps in the temperature of up to $5000rm,K$, XQ-100 provides a lower limit of 7.1$times 10^{-22}$ eV, HIRES/MIKE returns a stronger limit of 14.3$times 10^{-22}$ eV, while the combination of both data sets results in a limit of 20 $times 10^{-22}$ eV (2$sigma$ C.L.). The limits for the analysis of the combined data sets increases to 37.5$times 10^{-22}$ eV (2$sigma$ C.L.) when a smoother thermal history is assumed where the temperature of the IGM evolves as a power-law in redshift. Light boson masses in the range $1-10 times10^{-22}$ eV are ruled out at high significance by our analysis, casting strong doubts that FDM helps solve the small scale crisis of the cold dark matter models.
The Lyman-$alpha$ forest is a valuable probe of dark matter models featuring a scale-dependent suppression of the power spectrum as compared to $Lambda$CDM. In this work, we present a new estimator of the Lyman-$alpha$ flux power spectrum that does n ot rely on hydrodynamical simulations. Our framework is characterized by nuisance parameters that encapsulate the complex physics of the intergalactic medium and sensitivity to highly non-linear small-scale modes. After validating the approach based on high-resolution hydrodynamical simulations for $Lambda$CDM, we derive conservative constraints on interacting dark matter models from BOSS Lyman-$alpha$ data on large scales, k<0.02(km/s)^(-1), with the relevant nuisance parameters left free in the model fit. The estimator yields lower bounds on the mass of cannibal dark matter, where freeze-out occurs through 3-to-2 annihilation, in the MeV range. Furthermore, we find that models of dark matter interacting with dark radiation, which have been argued to address the $H_0$ and $sigma_8$ tensions, are compatible with BOSS Lyman-$alpha$ data.
We investigate constraints on scalar dark matter (DM) by analyzing the Lyman-alpha forest, which probes structure formation at medium and small scales, and also by studying its cosmological consequences at high and low redshift. For scalar DM that co nstitutes more than 30% of the total DM density, we obtain a lower limit m >~ 10^{-21} eV for the mass of scalar DM. This implies an upper limit on the initial field displacement (or the decay constant for an axion-like field) of phi <~ 10^{16} GeV. We also derive limits on the energy scale of cosmic inflation and establish an upper bound on the tensor-to-scalar ratio of r < 10^{-3} in the presence of scalar DM. Furthermore, we show that there is very little room for ultralight scalar DM to solve the small-scale crisis of cold DM without spoiling the Lyman-alpha forest results. The constraints presented in this paper can be used for testing generic theories that contain light scalar fields.
Updated constraints on dark matter cross section and mass are presented combining CMB power spectrum measurements from Planck, WMAP9, ACT, and SPT as well as several low-redshift datasets (BAO, HST, supernovae). For the CMB datasets, we combine WMAP9 temperature and polarization data for l <= 431 with Planck temperature data for 432 < l < 2500, ACT and SPT data for l > 2500, and Planck CMB four-point lensing measurements. We allow for redshift-dependent energy deposition from dark matter annihilation by using a `universal energy absorption curve. We also include an updated treatment of the excitation, heating, and ionization energy fractions, and provide updated deposition efficiency factors (f_eff) for 41 different dark matter models. Assuming perfect energy deposition (f_eff = 1) and a thermal cross section, dark matter masses below 26 GeV are excluded at the 2-sigma level. Assuming a more generic efficiency of f_eff = 0.2, thermal dark matter masses below 5 GeV are disfavored at the 2-sigma level. These limits are a factor of ~2 improvement over those from WMAP9 data alone. These current constraints probe, but do not exclude, dark matter as an explanation for reported anomalous indirect detection observations from AMS-02/PAMELA and the Fermi Gamma-ray Inner Galaxy data. They also probe relevant models that would explain anomalous direct detection events from CDMS, CRESST, CoGeNT, and DAMA, as originating from a generic thermal WIMP. Projected constraints from the full Planck release should improve the current limits by another factor of ~2, but will not definitely probe these signals. The proposed CMB Stage IV experiment will more decisively explore the relevant regions and improve upon the Planck constraints by another factor of ~2.
The renewed interest in the possibility that primordial black holes (PBHs) may constitute a significant part of the dark matter has motivated revisiting old observational constraints, as well as developing new ones. We present new limits on the PBH a bundance, from a comprehensive analysis of high-resolution, high-redshift Lyman-$alpha$ forest data. Poisson fluctuations in the PBH number density induce a small-scale power enhancement which departs from the standard cold dark matter prediction. Using a grid of hydrodynamic simulations exploring different values of astrophysical parameters, {we obtain a marginalized upper limit on the PBH mass of $f_{rm PBH}M_{rm PBH} sim 60~M_{odot}$ at $2sigma$, when a Gaussian prior on the reionization redshift is imposed, preventing its posterior distribution to peak on very high values, which are disfavoured by the most recent estimates obtained both through Cosmic Microwave Background and Inter-Galactic Medium observations. Such bound weakens to $f_{rm PBH}M_{rm PBH} sim 170~M_{odot}$, when a conservative flat prior is instead assumed. Both limits significantly improves previous constraints from the same physical observable.} We also extend our predictions to non-monochromatic PBH mass distributions, ruling out large regions of the parameter space for some of the most viable PBH extended mass functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا