ﻻ يوجد ملخص باللغة العربية
Compressibility effects in a turbulent transport of temperature field are investigated applying the quasi-linear approach for small Peclet numbers and the spectral $tau$ approach for large Peclet numbers. Compressibility of a fluid flow reduces the turbulent diffusivity of the mean temperature field similarly to that for particle number density and magnetic field. However, expressions for the turbulent diffusion coefficient for the mean temperature field in a compressible turbulence are different from those for the mean particle number density and the mean magnetic field. Combined effect of compressibility and inhomogeneity of turbulence causes an increase of the mean temperature in the regions with more intense velocity fluctuations due to a turbulent pumping. Formally, this effect is similar to a phenomenon of compressible turbophoresis found previously [J. Plasma Phys. {bf 84}, 735840502 (2018)] for non-inertial particles or gaseous admixtures. Gradient of the mean fluid pressure results in an additional turbulent pumping of the mean temperature field. The latter effect is similar to turbulent barodiffusion of particles and gaseous admixtures. Compressibility of a fluid flow also causes a turbulent cooling of the surrounding fluid due to an additional sink term in the equation for the mean temperature field. There is no analog of this effect for particles.
We develop a mean-field theory of compressibility effects in turbulent magnetohydrodynamics and passive scalar transport using the quasi-linear approximation and the spectral $tau$-approach. We find that compressibility decreases the $alpha$ effect a
We use an acoustic Lagrangian tracking technique, particularly adapted to measurements in open flows, and a versatile material particles generator (in the form of soap bubbles with adjustable size and density) to characterize Lagrangian statistics of
The existence of a quiescent core (QC) in the center of turbulent channel flows was demonstrated in recent experimental and numerical studies. The QC-region, which is characterized by relatively uniform velocity magnitude and weak turbulence levels,
We report an experimental study of the three-dimensional spatial structure of the low frequency temperature oscillations in a cylindrical Rayleigh-B{e}nard convection cell. It is found that thermal plumes are not emitted periodically, but randomly an
The proliferation of turbulence in subcritical wall-bounded shear flows involves spatially localised coherent structures. Turbulent spots correspond to finite-time nonlinear responses to pointwise disturbances and are regarded as seeds of turbulence