ترغب بنشر مسار تعليمي؟ اضغط هنا

Compressibility effects in a turbulent transport of temperature field

53   0   0.0 ( 0 )
 نشر من قبل Igor Rogachevskii
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Compressibility effects in a turbulent transport of temperature field are investigated applying the quasi-linear approach for small Peclet numbers and the spectral $tau$ approach for large Peclet numbers. Compressibility of a fluid flow reduces the turbulent diffusivity of the mean temperature field similarly to that for particle number density and magnetic field. However, expressions for the turbulent diffusion coefficient for the mean temperature field in a compressible turbulence are different from those for the mean particle number density and the mean magnetic field. Combined effect of compressibility and inhomogeneity of turbulence causes an increase of the mean temperature in the regions with more intense velocity fluctuations due to a turbulent pumping. Formally, this effect is similar to a phenomenon of compressible turbophoresis found previously [J. Plasma Phys. {bf 84}, 735840502 (2018)] for non-inertial particles or gaseous admixtures. Gradient of the mean fluid pressure results in an additional turbulent pumping of the mean temperature field. The latter effect is similar to turbulent barodiffusion of particles and gaseous admixtures. Compressibility of a fluid flow also causes a turbulent cooling of the surrounding fluid due to an additional sink term in the equation for the mean temperature field. There is no analog of this effect for particles.



قيم البحث

اقرأ أيضاً

We develop a mean-field theory of compressibility effects in turbulent magnetohydrodynamics and passive scalar transport using the quasi-linear approximation and the spectral $tau$-approach. We find that compressibility decreases the $alpha$ effect a nd the turbulent magnetic diffusivity both at small and large magnetic Reynolds numbers, Rm. Similarly, compressibility decreases the turbulent diffusivity for passive scalars both at small and large Peclet numbers, Pe. On the other hand, compressibility does not affect the effective pumping velocity of the magnetic field for large Rm, but it decreases it for small Rm. Density stratification causes turbulent pumping of passive scalars, but it is found to become weaker with increasing compressibility. No such pumping effect exists for magnetic fields. However, compressibility results in a new passive scalar pumping effect from regions of low to high turbulent intensity both for small and large Peclet numbers. It can be interpreted as compressible turbophoresis of noninertial particles and gaseous admixtures, while the classical turbophoresis effect exists only for inertial particles and causes them to be pumped to regions with lower turbulent intensity.
We use an acoustic Lagrangian tracking technique, particularly adapted to measurements in open flows, and a versatile material particles generator (in the form of soap bubbles with adjustable size and density) to characterize Lagrangian statistics of finite sized, neutrally bouyant, particles transported in an isotropic turbulent flow of air. We vary the size of the particles in a range corresponding to turbulent inertial scales and explore how the turbulent forcing experienced by the particles depends on their size. We show that, while the global shape of the intermittent acceleration probability density function does not depend significantly on particle size, the acceleration variance of the particles decreases as they become larger in agreement with the classical scaling for the spectrum of Eulerian pressure fluctuations in the carrier flow.
The existence of a quiescent core (QC) in the center of turbulent channel flows was demonstrated in recent experimental and numerical studies. The QC-region, which is characterized by relatively uniform velocity magnitude and weak turbulence levels, occupies about $40%$ of the cross-section at Reynolds numbers $Re_tau$ ranging from $1000$ to $4000$. The influence of the QC region and its boundaries on transport and accumulation of inertial particles has never been investigated before. Here, we first demonstrate that a QC is unidentifiable at $Re_tau = 180$, before an in-depth exploration of particle-laden turbulent channel flow at $Re_tau = 600$ is performed. The inertial spheres exhibited a tendency to accumulate preferentially in high-speed regions within the QC, i.e. contrary to the well-known concentration in low-speed streaks in the near-wall region. The particle wall-normal distribution, quantified by means of Voronoi volumes and particle number concentrations, varied abruptly across the QC-boundary and vortical flow structures appeared as void areas due to the centrifugal mechanism. The QC-boundary, characterized by a localized strong shear layer, appeared as a emph{barrier}, across which transport of inertial particles is hindered. Nevertheless, the statistics conditioned in QC-frame show that the mean velocity of particles outside of the QC was towards the core, whereas particles within the QC tended to migrate towards the wall. Such upward and downward particle motions are driven by similar motions of fluid parcels. The present results show that the QC exerts a substantial influence on transport and accumulation of inertial particles, which is of practical relevance in high-Reynolds number channel flow.
We report an experimental study of the three-dimensional spatial structure of the low frequency temperature oscillations in a cylindrical Rayleigh-B{e}nard convection cell. It is found that thermal plumes are not emitted periodically, but randomly an d continuously, from the top and bottom plates. We further found that the oscillation of the temperature field does not originate from the boundary layers, but rather is a result of the horizontal motion of the hot ascending and cold descending fluids being modulated by the twisting and sloshing motion of the bulk flow field.
The proliferation of turbulence in subcritical wall-bounded shear flows involves spatially localised coherent structures. Turbulent spots correspond to finite-time nonlinear responses to pointwise disturbances and are regarded as seeds of turbulence during transition. The rapid spatial decay of the turbulent fluctuations away from a spot is accompanied by large-scale flows with a robust structuration. The far field velocity field of these spots is investigated numerically using spectral methods in large domains in four different flow scenarios (plane Couette, plane Poiseuille, Couette-Poiseuille and a sinusoidal shear flow). At odds with former expectations, the planar components of the velocity field decay algebraically. These decay exponents depend only on the symmetries of the system, which here depend on the presence of an applied gradient, and not on the Reynolds number. This suggests an effective two-dimensional multipolar expansion for the far field, dominated by a quadrupolar flow component or, for asymmetric flow fields, by a dipolar flow component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا