ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating Visually Aligned Sound from Videos

93   0   0.0 ( 0 )
 نشر من قبل Mingkui Tan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We focus on the task of generating sound from natural videos, and the sound should be both temporally and content-wise aligned with visual signals. This task is extremely challenging because some sounds generated emph{outside} a camera can not be inferred from video content. The model may be forced to learn an incorrect mapping between visual content and these irrelevant sounds. To address this challenge, we propose a framework named REGNET. In this framework, we first extract appearance and motion features from video frames to better distinguish the object that emits sound from complex background information. We then introduce an innovative audio forwarding regularizer that directly considers the real sound as input and outputs bottlenecked sound features. Using both visual and bottlenecked sound features for sound prediction during training provides stronger supervision for the sound prediction. The audio forwarding regularizer can control the irrelevant sound component and thus prevent the model from learning an incorrect mapping between video frames and sound emitted by the object that is out of the screen. During testing, the audio forwarding regularizer is removed to ensure that REGNET can produce purely aligned sound only from visual features. Extensive evaluations based on Amazon Mechanical Turk demonstrate that our method significantly improves both temporal and content-wise alignment. Remarkably, our generated sound can fool the human with a 68.12% success rate. Code and pre-trained models are publicly available at https://github.com/PeihaoChen/regnet



قيم البحث

اقرأ أيضاً

Generating videos from text is a challenging task due to its high computational requirements for training and infinite possible answers for evaluation. Existing works typically experiment on simple or small datasets, where the generalization ability is quite limited. In this work, we propose GODIVA, an open-domain text-to-video pretrained model that can generate videos from text in an auto-regressive manner using a three-dimensional sparse attention mechanism. We pretrain our model on Howto100M, a large-scale text-video dataset that contains more than 136 million text-video pairs. Experiments show that GODIVA not only can be fine-tuned on downstream video generation tasks, but also has a good zero-shot capability on unseen texts. We also propose a new metric called Relative Matching (RM) to automatically evaluate the video generation quality. Several challenges are listed and discussed as future work.
We investigate the possibility of forcing a self-supervised model trained using a contrastive predictive loss to extract slowly varying latent representations. Rather than producing individual predictions for each of the future representations, the m odel emits a sequence of predictions shorter than that of the upcoming representations to which they will be aligned. In this way, the prediction network solves a simpler task of predicting the next symbols, but not their exact timing, while the encoding network is trained to produce piece-wise constant latent codes. We evaluate the model on a speech coding task and demonstrate that the proposed Aligned Contrastive Predictive Coding (ACPC) leads to higher linear phone prediction accuracy and lower ABX error rates, while being slightly faster to train due to the reduced number of prediction heads.
Segmenting objects in videos is a fundamental computer vision task. The current deep learning based paradigm offers a powerful, but data-hungry solution. However, current datasets are limited by the cost and human effort of annotating object masks in videos. This effectively limits the performance and generalization capabilities of existing video segmentation methods. To address this issue, we explore weaker form of bounding box annotations. We introduce a method for generating segmentation masks from per-frame bounding box annotations in videos. To this end, we propose a spatio-temporal aggregation module that effectively mines consistencies in the object and background appearance across multiple frames. We use our resulting accurate masks for weakly supervised training of video object segmentation (VOS) networks. We generate segmentation masks for large scale tracking datasets, using only their bounding box annotations. The additional data provides substantially better generalization performance leading to state-of-the-art results in both the VOS and more challenging tracking domain.
We consider the task of generating diverse and novel videos from a single video sample. Recently, new hierarchical patch-GAN based approaches were proposed for generating diverse images, given only a single sample at training time. Moving to videos, these approaches fail to generate diverse samples, and often collapse into generating samples similar to the training video. We introduce a novel patch-based variational autoencoder (VAE) which allows for a much greater diversity in generation. Using this tool, a new hierarchical video generation scheme is constructed: at coarse scales, our patch-VAE is employed, ensuring samples are of high diversity. Subsequently, at finer scales, a patch-GAN renders the fine details, resulting in high quality videos. Our experiments show that the proposed method produces diverse samples in both the image domain, and the more challenging video domain.
Continual learning consists in incrementally training a model on a sequence of datasets and testing on the union of all datasets. In this paper, we examine continual learning for the problem of sound classification, in which we wish to refine already trained models to learn new sound classes. In practice one does not want to maintain all past training data and retrain from scratch, but naively updating a model with new data(sets) results in a degradation of already learned tasks, which is referred to as catastrophic forgetting. We develop a generative replay procedure for generating training audio spectrogram data, in place of keeping older training datasets. We show that by incrementally refining a classifier with generative replay a generator that is 4% of the size of all previous training data matches the performance of refining the classifier keeping 20% of all previous training data. We thus conclude that we can extend a trained sound classifier to learn new classes without having to keep previously used datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا