ﻻ يوجد ملخص باللغة العربية
We induce and investigate the coarsening and melting dynamics of an initially static nanoparticle colloidal monolayer at an ionic liquid-vacuum interface, driven by a focused, scanning electron beam. Coarsening occurs through grain interface migration and larger-scale motions such as grain rotations, often facilitated by sliding dislocations. The progressive decrease in area fraction that drives melting of the monolayer is explained using an electrowetting model whereby particles at the interface are solvated once their accumulating charge recruits sufficient counterions to subsume the particle. Subject to stochastic particle removal from the monolayer, melting is recapitulated in simulations with a Lennard-Jones potential. This new driving mechanism for colloidal systems, whose dynamical timescales we show can be controlled with the accelerating voltage, opens the possibility to manipulate particle interactions dynamically without need to vary particle intrinsic properties or surface treatments. Furthermore, the decrease in particle size availed by electron imaging presents opportunities to observe force and time scales in a lesser-explored regime intermediate between typical colloidal and molecular systems.
We simulate colloids (radius $R sim 1mu$m) trapped at the interface between a cholesteric liquid crystal and an immiscible oil, at which the helical order (pitch p) in the bulk conflicts with the orientation induced at the interface, stabilizing an o
We propose a simple scaling theory describing the variation of the mean first passage time (MFPT) $tau(N,M)$ of a regular block copolymer of chain length $N$ and block size $M$ which is dragged through a selective liquid-liquid interface by an extern
The ordering of nanoparticles into predetermined configurations is of importance to the design of advanced technologies. In this work, we moderate the surface anchoring against the bulk elasticity of liquid crystals to dynamically shape nanoparticle
Recently it was shown that the WAC model for liquid silica [L. V. Woodcock, C. A. Angell, and P. Cheeseman, J. Chem. Phys. 65, 1565 (1976)] is remarkably close to having a liquid-liquid critical point (LLCP). We demonstrate that increasing the ion ch
Deformations of liquid interfaces by the optical radiation pressure of a focused laser wave were generally expected to display similar behavior, whatever the direction of propagation of the incident beam. Recent experiments showed that the invariance