ﻻ يوجد ملخص باللغة العربية
Alfven waves are responsible for the transfer of magnetic energy in the magnetized plasma. They are involved in heating solar atmosphere and driving solar wind through various nonlinear processes. Since the magnetic field configurations directly affect the nonlinearity of Alfven waves, it is important to investigate how they relate to the solar atmosphere and wind structure through the nonlinear propagation of Alfven waves. In this study, we carried out the one-dimensional magnetohydrodynamic simulations to realize the above relation. The results show that when the nonlinearity of Alfven waves in the chromosphere exceeds a critical value, the dynamics of the solar chromosphere (e.g., spicule) and the mass loss rate of solar wind tend to be independent of the energy input from the photosphere. In a situation where the Alfven waves are highly nonlinear, the strong shear torsional flow generated in the chromosphere ``fractures the magnetic flux tube. This corresponds to the formation of chromospheric intermediate shocks, which limit the transmission of the Poynting flux into the corona by Alfven waves and also inhibits the propagation of chromospheric slow shock.
This paper reviews our growing understanding of the physics behind coronal heating (in open-field regions) and the acceleration of the solar wind. Many new insights have come from the last solar cycles worth of observations and theoretical work. Meas
A three-dimensional MHD model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) ins
Physical processes which may lead to solar chromospheric heating are analyzed using high-resolution 1.5D non-ideal MHD modelling. We demonstrate that it is possible to heat the chromospheric plasma by direct resistive dissipation of high-frequency Al
We present a new version of the Alfven Wave Solar Model (AWSoM), a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfven wave turbulence. Th
In this paper, we show a proof of concept of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in t