ﻻ يوجد ملخص باللغة العربية
We introduce the concept of a universal quantum linear semigroupoid (UQSGd), which is a weak bialgebra that coacts on a (not necessarily connected) graded algebra $A$ universally while preserving grading. We restrict our attention to algebraic structures with a commutative base so that the UQSGds under investigation are face algebras (due to Hayashi). The UQSGd construction generalizes the universal quantum linear semigroups introduced by Manin in 1988, which are bialgebras that coact on a connected graded algebra universally while preserving grading. Our main result is that when $A$ is the path algebra $Bbbk Q$ of a finite quiver $Q$, each of the various UQSGds introduced here is isomorphic to the face algebra attached to $Q$. The UQSGds of preprojective algebras and of other algebras attached to quivers are also investigated.
Consider any representation $phi$ of a finite-dimensional Lie algebra $g$ by derivations of the completed symmetric algebra $hat{S}(g^*)$ of its dual. Consider the tensor product of $hat{S}(g^*)$ and the exterior algebra $Lambda(g)$. We show that the
We derive a formula for the trace of the antipode on endomorphism algebras of simple self-dual modules of nilpotent liftings of quantum planes. We show that the trace is equal to the quantum dimension of the module up to a nonzero scalar depending on the simple module.
For any homogeneous identity between $q$-minors, we provide an identity between $P,Q$-minors.
In this paper, we prove that a non-semisimple Hopf algebra H of dimension 4p with p an odd prime over an algebraically closed field of characteristic zero is pointed provided H contains more than two group-like elements. In particular, we prove that
We study graded right coideal subalgebras of Nichols algebras of semisimple Yetter-Drinfeld modules. Assuming that the Yetter-Drinfeld module admits all reflections and the Nichols algebra is decomposable, we construct an injective order preserving a