ترغب بنشر مسار تعليمي؟ اضغط هنا

Posterior Impropriety of some Sparse Bayesian Learning Models

91   0   0.0 ( 0 )
 نشر من قبل Anand Dixit
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Sparse Bayesian learning models are typically used for prediction in datasets with significantly greater number of covariates than observations. Such models often take a reproducing kernel Hilbert space (RKHS) approach to carry out the task of prediction and can be implemented using either proper or improper priors. In this article we show that a few sparse Bayesian learning models in the literature, when implemented using improper priors, lead to improper posteriors.



قيم البحث

اقرأ أيضاً

Since their inception in the 1980s, regression trees have been one of the more widely used non-parametric prediction methods. Tree-structured methods yield a histogram reconstruction of the regression surface, where the bins correspond to terminal no des of recursive partitioning. Trees are powerful, yet susceptible to over-fitting. Strategies against overfitting have traditionally relied on pruning greedily grown trees. The Bayesian framework offers an alternative remedy against overfitting through priors. Roughly speaking, a good prior charges smaller trees where overfitting does not occur. While the consistency of random histograms, trees and their ensembles has been studied quite extensively, the theoretical understanding of the Bayesian counterparts has been missing. In this paper, we take a step towards understanding why/when do Bayesian trees and their ensembles not overfit. To address this question, we study the speed at which the posterior concentrates around the true smooth regression function. We propose a spike-and-tree variant of the popular Bayesian CART prior and establish new theoretical results showing that regression trees (and their ensembles) (a) are capable of recovering smooth regression surfaces, achieving optimal rates up to a log factor, (b) can adapt to the unknown level of smoothness and (c) can perform effective dimension reduction when p>n. These results provide a piece of missing theoretical evidence explaining why Bayesian trees (and additive variants thereof) have worked so well in practice.
We present a new class of methods for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse linear modeling and additive nonparametric regression. We derive an algorit hm for fitting the models that is practical and effective even when the number of covariates is larger than the sample size. SpAM is closely related to the COSSO model of Lin and Zhang (2006), but decouples smoothing and sparsity, enabling the use of arbitrary nonparametric smoothers. An analysis of the theoretical properties of SpAM is given. We also study a greedy estimator that is a nonparametric version of forward stepwise regression. Empirical results on synthetic and real data are presented, showing that SpAM can be effective in fitting sparse nonparametric models in high dimensional data.
This paper introduces a new approach to the study of rates of convergence for posterior distributions. It is a natural extension of a recent approach to the study of Bayesian consistency. In particular, we improve on current rates of convergence for models including the mixture of Dirichlet process model and the random Bernstein polynomial model.
In this work, we focus on variational Bayesian inference on the sparse Deep Neural Network (DNN) modeled under a class of spike-and-slab priors. Given a pre-specified sparse DNN structure, the corresponding variational posterior contraction rate is c haracterized that reveals a trade-off between the variational error and the approximation error, which are both determined by the network structural complexity (i.e., depth, width and sparsity). However, the optimal network structure, which strikes the balance of the aforementioned trade-off and yields the best rate, is generally unknown in reality. Therefore, our work further develops an {em adaptive} variational inference procedure that can automatically select a reasonably good (data-dependent) network structure that achieves the best contraction rate, without knowing the optimal network structure. In particular, when the true function is H{o}lder smooth, the adaptive variational inference is capable to attain (near-)optimal rate without the knowledge of smoothness level. The above rate still suffers from the curse of dimensionality, and thus motivates the teacher-student setup, i.e., the true function is a sparse DNN model, under which the rate only logarithmically depends on the input dimension.
We introduce new estimates and tests of independence in copula models with unknown margins using $phi$-divergences and the duality technique. The asymptotic laws of the estimates and the test statistics are established both when the parameter is an i nterior or a boundary value of the parameter space. Simulation results show that the choice of $chi^2$-divergence has good properties in terms of efficiency-robustness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا