ﻻ يوجد ملخص باللغة العربية
Time-domain Brillouin scattering uses ultrashort laser pulses to generate coherent acoustic pulses of picoseconds duration in a solid sample and to follow their propagation in order to image material inhomogeneities with sub-optical depth resolution. The width of the acoustic pulse limits the spatial resolution of the technique along the direction of the pulse propagation to less than several tens of nanometres. Thus, the time-domain Brillouin scattering outperforms axial resolution of the classical frequency-domain Brillouin scattering microscopy, which uses continuous lasers and thermal phonons and which spatial resolution is controlled by light focusing. The technique benefits from the application of the coherent acoustic phonons, and its application has exciting perspectives for the nanoscale imaging in biomedical and material sciences. In this study, we report on the application of the time-domain Brillouin scattering to the 3D imaging of a polycrystal of water ice containing two high-pressure phases. The imaging, accomplished via a simultaneous detection of quasi-longitudinal and quasi-shear waves, provided the opportunity to identify the phase for individual grains and evaluate their crystallographic orientation. Monitoring the propagation of the acoustic waves in two neighbouring grains simultaneously provided an additional mean for the localisation of the grain boundaries.
We report a detailed ab initio investigation on hydrogen bonding, geometry, electronic structure, and lattice dynamics of ice under a large high pressure range, including the ice X phase (55-380GPa), the previous theoretically proposed higher-pressur
We present an optical technique based on ultrafast photoacoustics to precisely determine the local temperature distribution profile in liquid samples in contact with a laser heated optical transducer. This ultrafast pump-probe experiment uses time-do
A study of high pressure solid Te was carried out at room temperature using Raman spectroscopy and Density Functional Theory (DFT) calculations. The analysis of the P-dependence of the experi- mental phonon spectrum reveals the occurrence of phase tr
Evolutionary structure searches predict three new phases of iodine polyhydrides stable under pressure. Insulating P1-H5I, consisting of zigzag chains of HI (delta+)and H2(delta-) molecules, is stable between 30-90 GPa. Cmcm-H2I and P6/mmm-H4I are fou
We investigate the high-pressure behaviour of beryllium, magnesium and calcium difluorides using ab initio random structure searching and density functional theory (DFT) calculations, over the pressure range 0-70 GPa. Beryllium fluoride exhibits exte