ﻻ يوجد ملخص باللغة العربية
The periphery of the Small Magellanic Cloud (SMC) can unlock important information regarding galaxy formation and evolution in interacting systems. Here, we present a detailed study of the extended stellar structure of the SMC using deep colour-magnitude diagrams (CMDs), obtained as part of the Survey of the MAgellanic Stellar History (SMASH). Special care was taken in the decontamination of our data from MW foreground stars, including from foreground globular clusters NGC 362 and 47 Tuc. We derived the SMC surface brightness using a ``conservative approach from which we calculated the general parameters of the SMC, finding a staggered surface brightness profile. We also traced the fainter outskirts by constructing a stellar density profile. This approach, based on stellar counts of the oldest main sequence turn-off (MSTO) stars, uncovered a tidally disrupted stellar feature that reaches as far out as 12 degrees from the SMC centre. We also serendipitously found a faint feature of unknown origin located at $sim 14$ degrees from the centre of the SMC and that we tentatively associated to a more distant structure. We compared our results to in-house simulations of a $1times10^{9} M_odot$ SMC, finding that its elliptical shape can be explained by its tidal disruption under the combined presence of the MW and the LMC. Finally, we found that the older stellar populations show a smooth profile while the younger component presents a jump in the density followed by a flat profile, confirming the heavily disturbed nature of the SMC.
The existence of galaxies with a surface brightness $mu$ lower than the night sky has been known since three decades. Yet, their formation mechanism and emergence within a $rmLambda CDM$ universe has remained largely undetermined. For the first time,
Our statistical understanding of galaxy evolution is fundamentally driven by objects that lie above the surface-brightness limits of current wide-area surveys (mu ~ 23 mag arcsec^-2). While both theory and small, deep surveys have hinted at a rich po
We investigate the formation and properties of low surface brightness galaxies (LSBGs) with $M_{*} > 10^{9.5} mathrm{M_{odot}}$ in the EAGLE hydrodynamical cosmological simulation. Galaxy surface brightness depends on a combination of stellar mass su
With the aim of assessing if low surface brightness galaxies host stellar bars, and study the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 dataset to construct a large volume-limited sample of gala
Low-surface-brightness galaxies (LSBGs) -- defined as systems that are fainter than the surface-brightness limits of past wide-area surveys -- form the overwhelming majority of galaxies in the dwarf regime (M* < 10^9 MSun). Using NewHorizon, a high-r