A regular pattern, revealing the leading role of the light-fragment nuclear charge, is found to emerge from a consistent analysis of the experimental information collected recently on low-energy asymmetric fission of neutron-deficient nuclei around lead. The observation is corroborated by a theoretical investigation within a microscopic framework, suggesting the importance of proton configurations driven by quadrupole-octupole correlations. This is in contrast to the earlier theoretical interpretations in terms of dominant neutron shells. The survey of a wider area of the nuclear chart by a semi-empirical approach points to the lack of understanding of the competition between the different underlying macroscopic and microscopic forces in a quantitative manner. Combined with previously identified stabilizing forces, the present finding shows a striking connection between the old (actinide) and new (pre-actinide) islands of asymmetric fission which could steer the strive for an unified theory of fission.