ﻻ يوجد ملخص باللغة العربية
The Neumann--Poincare operator defined on a smooth surface has a sequence of eigenvalues converging to zero, and the single layer potentials of the corresponding eigenfunctions, called plasmons, decay to zero, i.e., are localized on the surface, as the index of the sequence $j$ tends to infinity. We investigate quantitatively the surface localization of the plasmons in three dimensions. The results are threefold. We first prove that on smooth bounded domains of general shape the sequence of plasmons converges to zero off the boundary surface almost surely at the rate of $j^{-1/2}$. We then prove that if the domain is strictly convex, then the convergence rate becomes $j^{-infty}$, namely, it is faster than $j^{-N}$ for any integer $N$. As a consequence, we prove that cloaking by anomalous localized resonance does not occur on three-dimensional strictly convex smooth domains. We then look into the surface localization of the plasmons on the Clifford torus by numerical computations. The Clifford torus is taken as an example of non-convex surfaces. The computational results show that the torus exhibits the spectral property completely different from strictly convex domains. In particular, they suggest that there is a subsequence of plasmons on the torus which has much slower decay than other entries of the sequence.
We consider the transmission problem for the Laplace equation on an infinite three-dimensional wedge, determining the complex parameters for which the problem is well-posed, and characterizing the infinite multiplicity nature of the spectrum. This is
We study bounded operators defined in terms of the regular representations of the $C^*$-algebra of an amenable, Hausdorff, second countable locally compact groupoid endowed with a continuous $2$-cocycle. We concentrate on spectral quantities associat
We investigate selfadjoint $C_0$-semigroups on Euclidean domains satisfying Gaussian upper bounds. Major examples are semigroups generated by second order uniformly elliptic operators with Kato potentials and magnetic fields. We study the long time b
In this paper we study the Cauchy problem for the Landau Hamiltonian wave equation, with time dependent irregular (distributional) electromagnetic field and similarly irregular velocity. For such equations, we describe the notion of a `very weak solu
We study the adjoint of the double layer potential associated with the Laplacian (the adjoint of the Neumann-Poincare operator), as a map on the boundary surface $Gamma$ of a domain in $mathbb{R}^3$ with conical points. The spectrum of this operator