ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Constraint on Vector Mediator of Neutrino-Electron Interaction in light of XENON1T Excess

236   0   0.0 ( 0 )
 نشر من قبل Yuhei Nakayama
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the XENON1T collaboration reported an excess in the electron recoil energy spectrum. One of the simplest new physics interpretation is a new neutrino-electron interaction mediated by a light vector particle. However, for the parameter region favored by this excess, the constraints from the stellar cooling are severe. Still, there are astrophysical uncertainties on those constraints. In this paper, we discuss the constraint on the light mediator from the effective number of neutrino Neff in the CMB era, which provides an independent constraint. We show that Neff is significantly enhanced and exceeds the current constraint in the parameter region favored for the XENON1T excess. As a result, the interpretation by a light mediator heavier than about 1 eV is excluded by the Neff constraint.



قيم البحث

اقرأ أيضاً

Recently, the XENON1T experiment has observed an excess in the electronic recoil data in the recoil energy range of $1$-$7$ keV. One of the most favored new physics interpretations is electron scattering with a boosted particle with a velocity of $si m 0.1$ and a mass of $gtrsim 0.1,mathrm{MeV}$. If such a particle has a strong interaction with electrons, it may affect the standard scenario of cosmology or be observed at low-threshold direct detection experiments. We study various constraints, mainly focusing on those from the big-bang nucleosynthesis, supernova cooling, and direct detection experiments. We discuss the implication of these constraints on electron-scattering interpretation of the XENON1T excess.
122 - Manoranjan Dutta 2021
We propose a self-interacting inelastic dark matter (DM) scenario as a possible origin of the recently reported excess of electron recoil events by the XENON1T experiment. Two quasi-degenerate Majorana fermion DM interact within themselves via a ligh t hidden sector massive gauge boson and with the standard model particles via gauge kinetic mixing. We also consider an additional long-lived singlet scalar which helps in realising correct dark matter relic abundance via a hybrid setup comprising of both freeze-in and freeze-out mechanisms. While being consistent with the required DM phenomenology along with sufficient self-interactions to address the small scale issues of cold dark matter, the model with GeV scale DM can explain the XENON1T excess via inelastic down scattering of heavier DM component into the lighter one. All these requirements leave a very tiny parameter space keeping the model very predictive for near future experiments.
We show that the electron recoil excess around 2 keV claimed by the Xenon collaboration can be fitted by DM or DM-like particles having a fast component with velocity of order $sim 0.1$. Those particles cannot be part of the cold DM halo of our Galax y, so we speculate about their possible nature and origin, such as fast moving DM sub-haloes, semi-annihilations of DM and relativistic axions produced by a nearby axion star. Feasible new physics scenarios must accommodate exotic DM dynamics and unusual DM properties.
The cosmic electron energy spectrum recently observed by the DAMPE experiment exhibits two interesting features, including a break around 0.9 TeV and a sharp resonance near 1.4 TeV. In this analysis, we propose a dark matter explanation to both exoti c features seen by DAMPE. In our model, dark matter annihilates in the galaxy via two different channels that lead to both a narrow resonance spectrum near 1.4 TeV and electron excess events over an extended energy range thus generating the break structure around TeV. The two annihilation channels are mediated by two gauge bosons that interact both with dark matter and with the standard model fermions. Dark matter annihilations through the s-channel process mediated by the heavier boson produce monoenergetic electron-positron pairs leading to the resonance excess. The lighter boson has a mass smaller than the dark matter such that they can be on-shell produced in dark matter annihilations in the galaxy; the lighter bosons in the final state subsequently decay to generate the extended excess events due to the smeared electron energy spectrum in this process. We further analyze constraints from various experiments, including HESS, Fermi, AMS, and LHC, to the parameter space of the model where both excess events can be accounted for. In order to interpret the two new features in the DAMPE data, dark matter annihilation cross sections in the current galaxy are typically much larger than the canonical thermal cross section needed for the correct dark matter relic abundance. This discrepancy, however, is remedied by the nonperturbative Sommerfeld enhancement because of the existence of a lighter mediator in the model.
We show that electron recoils induced by non-relativistic Dark Matter interactions can fit well the recently reported Xenon1T excess, if they are mediated by a light pseudo-scalar in the MeV range. This is due to the favorable momentum-dependence of the resulting scattering rate, which partially compensates the unfavorable kinematics that tends to strongly suppress keV electron recoils. We study the phenomenology of the mediator and identify the allowed parameter space of the Xenon1T excess which is compatible with all experimental limits. We also find that the anomalous magnetic moments $(g-2)_{mu,e}$ of muons and electrons can be simultaneously explained in this scenario, at the prize of a fine-tuning in the couplings of the order of a few percent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا