ترغب بنشر مسار تعليمي؟ اضغط هنا

Switching dynamics of reconfigurable perfect soliton crystals in dual-coupled microresonators

275   0   0.0 ( 0 )
 نشر من قبل Zhonghan Wu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dual-coupled structure is typically used to actively change the local dispersion of microresonator through controllable avoided mode crossings (AMXs). In this paper, we investigate the reconfigurability of perfect soliton crystals (PSCs) based on dual-coupled microresonators. The switching dynamics of PSCs are numerically simulated using perturbed Lugiato-Lefever equation (LLE). Nonlinear phenomena such as solitons rearranging, merging and bursting are observed in the switching process. Specially, for the first time, we have discovered an unexplored $PSC$ $region$ in the microcomb power-detuning phase plane. In $PSC$ $region$, the soliton number ($N$) of PSC state can be switched successively and bidirectionally in a defect-free fashion, verifying the feasibility and advantages of our scheme. The reconfigurability of PSCs would further liberate the application potential of microcombs in a wide range of fields, including frequency metrology, optical communications, and signal-processing systems.



قيم البحث

اقرأ أيضاً

Soliton crystals are periodic patterns of multi-spot optical fields formed from either time or space entanglements of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained interest in recent years with the advent and progress in nonlinear optical fibers and fiber lasers, photonic crystals, wave-guided wave systems and most recently optical ring microresonator devices. In this work an extensive analysis of characteristic features of soliton crystals is carried out, with emphasis on their one-to-one correspondance with Elliptic solitons. In this purpose we examine their formation, their stability and their dynamics in ring-shaped nonlinear optical media within the framework of the Lugiato-Lefever equation. The stability analysis deals with internal modes of the system via a $2times2$-matrix Lame type eigenvalue problem, the spectrum of which is shown to possess a rich set of boundstates consisting of stable zero-fequency modes and unstable decaying as well as growing modes. Turning towards the dynamics of Elliptic solitons in ring-shaped fiber resonators with Kerr nonlinearity, first of all we propose a collective-coordinate approach, based on a Lagrangian formalism suitable for Elliptic-soliton solutions to the nonlinear Schrodinger equation with an arbitrary perturbation. Next we derive time evolutions of Elliptic-soliton parameters in the specific context of ring-shaped optical fiber resonators, where the optical field evolution is tought to be governed by the Lugiato-Lefever equation. By solving numerically the collective-coordinate equations an analysis of the amplitude, the position, the phase of internal oscillations, the phase velocity and the energy is carried out and reveals a complex dynamics of the Elliptic soliton in ring-shaped optical microresonators.
On-chip manipulation of single resonance over broad background comb spectra of microring resonators is indispensable, ranging from tailoring laser emission, optical signal processing to non-classical light generation, yet challenging without scarifyi ng the quality factor or inducing additional dispersive effects. Here, we propose an experimentally feasible platform to realize on-chip selective depletion of single resonance in microring with decoupled dispersion and dissipation, which are usually entangled by Kramer-Kroning relation. Thanks to the existence of non-Hermitian singularity, unsplit but significantly increased dissipation of the selected resonance is achieved due to the simultaneous collapse of eigenvalues and eigenvectors, fitting elegantly the requirement of pure single-mode depletion. With delicate yet experimentally feasible parameters, we show explicit evidence of modulation instability as well as deterministic single soliton generation in microresonators induced by depletion in normal and anomalous dispersion regime, respectively. Our findings connect non-Hermitian singularities to wide range of applications associated with selective single mode manipulation in microwave photonics, quantum optics, ultrafast optics and beyond.
We present a novel compact dual-comb source based on a monolithic optical crystalline MgF$_2$ multi-resonator stack. The coherent soliton combs generated in two microresonators of the stack with the repetition rate of 12.1 GHz and difference of 1.62 MHz provided after heterodyning a 300 MHz wide radio-frequency comb. Analogous system can be used for dual-comb spectroscopy, coherent LIDAR applications and massively parallel optical communications.
The Kerr nonlinearity can be a key enabler for many digital photonic circuits as it allows access to bistable states needed for all-optical memories and switches. A common technique is to use the Kerr shift to control the resonance frequency of a res onator and use it as a bistable, optically-tunable filter. However, this approach works only in a narrow power and frequency range or requires the use of an auxiliary laser. An alternative approach is to use the asymmetric bistability between counterpropagating light states resulting from the interplay between self- and cross-phase modulation, which allows light to enter a ring resonator in just one direction. Logical HIGH and LOW states can be represented and stored as the direction of circulation of light, and controlled by modulating the input power. Here we study the switching speed, operating laser frequency and power range, and contrast ratio of such a device. We reach a bitrate of 2 Mbps in our proof-of-principle device over an optical frequency range of 1 GHz and an operating power range covering more than one order of magnitude. We also calculate that integrated photonic circuits could exhibit bitrates of the order of Gbps, paving the way for the realization of robust and simple all-optical memories, switches, routers and logic gates that can operate at a single laser frequency with no additional electrical power.
Optical frequency comb generation in microresonators has attracted significant attention over the past decade, as it offers the promising potential for chip-scale optical frequency synthesis, optical clocks and precise optical spectroscopy. However, accessing temporal dissipative Kerr soliton (DKSs) is known to be severely hampered by thermal effects. Furthermore, due to the degeneracy of soliton existence range with respect to soliton number, deterministically accessing single soliton state is another challenge. Here, we demonstrate stable and deterministic single soliton generation in AlN-on-sapphire platform via auxiliary laser pumping scheme without the requirement of fast control of the pump power and detuning. Moreover, we reveal the underlying physics of soliton switching in a dual-pumped microcomb, which is fully described by the Lugiato - Lefever equation. The switching process is attributed to cross-phase modulation (XPM) induced degeneracy lifting of the soliton existence range, corresponding to an effective negative thermo-optic effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا