ﻻ يوجد ملخص باللغة العربية
Let $R$ be a commutative Noetherian ring with unit. We classify the characters of the group $mathrm{EL}_d (R)$ provided that $d$ is greater than the stable range of the ring $R$. It follows that every character of $mathrm{EL}_d (R)$ is induced from a finite dimensional representation. Towards our main result we classify $mathrm{EL}_d (R)$-invariant probability measures on the Pontryagin dual group of $R^d$.
Inner relations are derived between partial augmentations of certain elements (units or idempotents) in group rings.
We provide two ways to show that the R. Thompson group $F$ has maximal subgroups of infinite index which do not fix any number in the unit interval under the natural action of $F$ on $(0,1)$, thus solving a problem by D. Savchuk. The first way employ
We prove that Thompsons group $F$ has a subgroup $H$ such that the conjugacy problem in $H$ is undecidable and the membership problem in $H$ is easily decidable. The subgroup $H$ of $F$ is a closed subgroup of $F$. That is, every function in $F$ whic
Recently Vaughan Jones showed that the R. Thompson group $F$ encodes in a natural way all knots, and a certain subgroup $vec F$ of $F$ encodes all oriented knots. We answer several questions of Jones about $vec F$. In particular we prove that the sub
The branching theorem expresses irreducible character values for the symmetric group $S_n$ in terms of those for $S_{n-1}$, but it gives the values only at elements of $S_n$ having a fixed point. We extend the theorem by providing a recursion formula