ﻻ يوجد ملخص باللغة العربية
We compute the ${cal N}=2$ supersymmetric partition function of a gauge theory on a four-dimensional compact toric manifold via equivariant localization. The result is given by a piecewise constant function of the Kahler form with jumps along the walls where the gauge symmetry gets enhanced. The partition function on such manifolds is written as a sum over the residues of a product of partition functions on $mathbb{C}^2$. The evaluation of these residues is greatly simplified by using an abstruse duality that relates the residues at the poles of the one-loop and instanton parts of the $mathbb{C}^2$ partition function. As particular cases, our formulae compute the $SU(2)$ and $SU(3)$ {it equivariant} Donaldson invariants of $mathbb{P}^2$ and $mathbb{F}_n$ and in the non-equivariant limit reproduce the results obtained via wall-crossing and blow up methods in the $SU(2)$ case. Finally, we show that the $U(1)$ self-dual connections induce an anomalous dependence on the gauge coupling, which turns out to satisfy a $mathcal{N}=2$ analog of the $mathcal{N}=4$ holomorphic anomaly equations.
In this article, we extend the work of arXiv:0901.4744 to a Bethe/Gauge correspondence between 2d (or resp. 3d) SO/Sp gauge theories and open XXX (resp. XXZ) spin chains with diagonal boundary conditions. The case of linear quiver gauge theories is also considered.
The topological vertex formalism for 5d $mathcal{N}=1$ gauge theories is not only a convenient tool to compute the instanton partition function of these theories, but it is also accompanied by a nice algebraic structure that reveals various kinds of
We study gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well
We study the Gribov problem in four-dimensional topological Yang-Mills theories following the Baulieu-Singer approach in the (anti-)self-dual Landau gauges. This is a gauge-fixed approach that allows to recover the topological spectrum, as first cons
We discuss the modular anomaly equation satisfied by the the prepotential of 4-dimensional N=2* theories and show that its validity is related to S-duality. The recursion relations that follow from the modular anomaly equation allow one to write the