Homotopy ribbon concordance, Blanchfield pairings, and twisted Alexander polynomials


الملخص بالإنكليزية

We establish homotopy ribbon concordance obstructions coming from the Blanchfield form and Levine-Tristram signatures. Then, as an application of twisted Alexander polynomials, we show that for every knot K with nontrivial Alexander polynomial, there exists an infinite family of knots that are all concordant to K and have the same Blanchfield form as K, such that no pair of knots in that family is homotopy ribbon concordant.

تحميل البحث