ﻻ يوجد ملخص باللغة العربية
We present a novel privacy preservation strategy for decentralized visualization. The key idea is to imitate the flowchart of the federated learning framework, and reformulate the visualization process within a federated infrastructure. The federation of visualization is fulfilled by leveraging a shared global module that composes the encrypted externalizations of transformed visual features of data pieces in local modules. We design two implementations of federated visualization: a prediction-based scheme, and a query-based scheme. We demonstrate the effectiveness of our approach with a set of visual forms, and verify its robustness with evaluations. We report the value of federated visualization in real scenarios with an expert review.
Federated learning is the distributed machine learning framework that enables collaborative training across multiple parties while ensuring data privacy. Practical adaptation of XGBoost, the state-of-the-art tree boosting framework, to federated lear
Distributed Virtual Private Networks (dVPNs) are new VPN solutions aiming to solve the trust-privacy concern of a VPNs central authority by leveraging a distributed architecture. In this paper, we first review the existing dVPN ecosystem and debate o
Federated learning enables a large number of clients to participate in learning a shared model while maintaining the training data stored in each client, which protects data privacy and security. Till now, federated learning frameworks are built in a
In this paper, we propose a perceptually-guided visualization sharpening technique. We analyze the spectral behavior of an established comprehensive perceptual model to arrive at our approximated model based on an adapted weighting of the bandpass im
Many application scenarios call for training a machine learning model among multiple participants. Federated learning (FL) was proposed to enable joint training of a deep learning model using the local data in each party without revealing the data to