ﻻ يوجد ملخص باللغة العربية
We use multi-epoch quasar spectroscopy to determine how accurately single-epoch spectroscopy can locate quasars in emission-line parameter space in order to inform investigations where time-resolved spectroscopy is not available. We explore the improvements in emission-line characterization that result from using non-parametric information from many lines as opposed to a small number of parameters for a single line, utilizing reconstructions based on an independent component analysis applied to the data from the Sloan Digital Sky Survey Reverberation Mapping project. We find that most of the quasars are well described by just two components, while more components signal a quasar likely to yield a successful reverberation mapping analysis. In single-epoch spectroscopy the apparent variability of equivalent width is exaggerated because it is dependent on the continuum. Multi-epoch spectroscopy reveals that single-epoch results do not significantly change where quasars are located in CIV parameter space and do not have a significant impact on investigations of the global Baldwin Effect. Quasars with emission line properties indicative of higher $L/L_{Edd}$ are less variable, consistent with models with enhanced accretion disk density. Narrow absorption features at the systemic redshift may be indicative of orientation (including radio-quiet quasars) and may appear in as much as 20% of the quasar sample. Future work applying these techniques to lower luminosity quasars will be important for understanding the nature of accretion disk winds.
We present the first results of a 4.5 year monitoring campaign of the three bright images of multiply imaged $z=2.805$ quasar SDSS J2222+2745 using the Gemini North Multi-Object Spectrograph (GMOS-N) and the Nordic Optical Telescope (NOT). We take ad
For the sample from Ge et al. of 87 low-$z$ Palomar--Green (PG) quasi-stellar objects (QSOs) and 130 high-$z$ QSOs ($0<z<5$) with $hb$-based single-epoch supermassive black hole (SMBH) masses, we performed a uniform decomposition of the civ $lambda$1
We report on ~0.35(~2 kpc) resolution observations of the [CII] and dust continuum emission from five z>6 quasar host-companion galaxy pairs obtained with the Atacama Large Millimeter/submillimeter Array. The [CII] emission is resolved in all galaxie
The flux ratios of high-ionization lines are commonly assumed to indicate the metallicity of the broad emission line region in luminous quasars. When accounting for the variation in their kinematic profiles, we show that the NV/CIV, (SiIV+OIV])/CIV a
The [CII] fine-structure transition at 158 micron is frequently the brightest far-infrared line in galaxies. Due to its low ionization potential, C+ can trace the ionized, atomic, and molecular phases of the ISM. We present velocity resolved [CII] an