Periodic Surface Homeomorphisms and Contact Structures


الملخص بالإنكليزية

Periodic surface homemorphisms (diffeomorphisms) play a significant role in the the Nielsen-Thurston classification of surface homeomorphisms. Periodic surface homeomorphisms can be described (up to conjugacy) by using data sets which are combinatorial objects. In this article, we start by associating a rational open book to a slight modification of a given data set, called marked data set. It is known that every rational open book supports a contact structure. Thus, we can associate a contact structure to a periodic map and study the properties of it in terms combinatorial conditions on marked data sets. In particular, we prove that a class of data sets, satisfying easy-to-check combinatorial hypothesis, gives rise to Stein fillable contact structures. In addition to the above, we prove an analogue of Moris construction of explicit symplectic filling for rational open books. We also prove a sufficient condition for Stein fillability of rational open books analogous to the positivity of monodromy in honest open books as in the result of Giroux and Loi-Piergallini.

تحميل البحث