ﻻ يوجد ملخص باللغة العربية
We present results from the SPring-8 Angstrom Compact free electron LAser (SACLA) XFEL facility, using a high intensity ($sim!10^{20},$W/cm$^2$) X-ray pump X-ray probe scheme to observe changes in the ionic structure of silicon induced by X-ray heating of the electrons. By avoiding Laue spots in the scattering signal from a single crystalline sample, we observe a rapid rise in diffuse scattering, which we attribute to a loss of lattice order and a transition to a liquid state within 100 fs of irradiation, a timescale which agrees well with first principles simulations, but is faster than that predicted by purely inertial behavior. This method is capable of observing liquid scattering without masking or filtering of signal from the ambient solid, allowing the liquid structure to be measured throughout and beyond the phase change.
For the last decade numerous researchers have been trying to develop experimental techniques to use X-ray Thomson scattering as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those u
The advent of x-ray free-electron lasers (XFELs), which provide intense ultrashort x-ray pulses, has brought a new way of creating and analyzing hot and warm dense plasmas in the laboratory. Because of the ultrashort pulse duration, the XFEL-produced
Plasma-based parametric amplification using stimulated Brillouin scattering offers a route to coherent x-ray pulses orders-of-magnitude more intense than those of the brightest available sources. Brillouin amplification permits amplification of short
We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a
Laser-induced nonthermal melting in semiconductors has been studied for several decades, but the melting mechanism is still under debate. Based on real-time time-dependent density functional theory (rt-TDDFT) simulation, we reveal that the rapid nont