ﻻ يوجد ملخص باللغة العربية
The stratum $mathcal{H}(a,-b_{1},dots,-b_{p})$ of meromorphic $1$-forms with a zero of order $a$ and poles of orders $b_{1},dots,b_{p}$ on the Riemann sphere has a map, the isoresidual fibration, defined by assigning to any differential its residues at the poles. We show that above the complement of a hyperplane arrangement, the resonance arrangement, the isoresidual fibration is an unramified cover of degree $frac{a!}{(a+2-p)!}$. Moreover, the monodromy of the fibration is computed for strata with at most three poles and a system of generators and relations is given for all strata. These results are obtained by associating to special differentials of the strata a tree, and by studying the relationship between the geometric properties of the differentials and the combinatorial properties of these trees.
We study the connection between probability distributions satisfying certain conditional independence (CI) constraints, and point and line arrangements in incidence geometry. To a family of CI statements, we associate a polynomial ideal whose algebra
We introduce a new class of arrangements of hyperplanes, called (strictly) plus-one generated arrangements, from algebraic point of view. Plus-one generatedness is close to freeness, i.e., plus-one generated arrangements have their logarithmic deriva
We describe and investigate a connection between the topology of isolated singularities of plane curves and the mutation equivalence, in the sense of cluster algebra theory, of the quivers associated with their morsifications.
We express the Masur-Veech volume and the area Siegel-Veech constant of the moduli space of meromorphic quadratic differential with simple poles as polynomials in the intersection numbers of psi-classes supported on the boundary cycles of the Deligne
We express the Masur-Veech volume and the area Siegel-Veech constant of the moduli space $mathcal{Q}_{g,n}$ of genus $g$ meromorphic quadratic differentials with $n$ simple poles as polynomials in the intersection numbers of $psi$-classes with explic