ترغب بنشر مسار تعليمي؟ اضغط هنا

SAFER: Sparse Secure Aggregation for Federated Learning

85   0   0.0 ( 0 )
 نشر من قبل Constance Beguier
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning enables one to train a common machine learning model across separate, privately-held datasets via distributed model training. During federated training, only intermediate model parameters are transmitted to a central server which aggregates these parameters to create a new common model, thus exposing only intermediate parameters rather than the training data itself. However, some attacks (e.g. membership inference) are able to infer properties of local data from these intermediate model parameters. Hence, performing the aggregation of these client-specific model parameters in a secure way is required. Additionally, the communication cost is often the bottleneck of the federated systems, especially for large neural networks. So, limiting the number and the size of communications is necessary to efficiently train large neural architectures. In this article, we present an efficient and secure protocol for performing secure aggregation over compressed model updates in the context of collaborative, few-party federated learning, a context common in the medical, healthcare, and biotechnical use-cases of federated systems. By making compression-based federated techniques amenable to secure computation, we develop a secure aggregation protocol between multiple servers with very low communication and computation costs and without preprocessing overhead. Our experiments demonstrate the efficiency of this new approach for secure federated training of deep convolutional neural networks.



قيم البحث

اقرأ أيضاً

We present a robust aggregation approach to make federated learning robust to settings when a fraction of the devices may be sending corrupted updates to the server. The proposed approach relies on a robust secure aggregation oracle based on the geom etric median, which returns a robust aggregate using a constant number of calls to a regular non-robust secure average oracle. The robust aggregation oracle is privacy-preserving, similar to the secure average oracle it builds upon. We provide experimental results of the proposed approach with linear models and deep networks for two tasks in computer vision and natural language processing. The robust aggregation approach is agnostic to the level of corruption; it outperforms the classical aggregation approach in terms of robustness when the level of corruption is high, while being competitive in the regime of low corruption.
Recent attacks on federated learning demonstrate that keeping the training data on clients devices does not provide sufficient privacy, as the model parameters shared by clients can leak information about their training data. A secure aggregation pro tocol enables the server to aggregate clients models in a privacy-preserving manner. However, existing secure aggregation protocols incur high computation/communication costs, especially when the number of model parameters is larger than the number of clients participating in an iteration -- a typical scenario in federated learning. In this paper, we propose a secure aggregation protocol, FastSecAgg, that is efficient in terms of computation and communication, and robust to client dropouts. The main building block of FastSecAgg is a novel multi-secret sharing scheme, FastShare, based on the Fast Fourier Transform (FFT), which may be of independent interest. FastShare is information-theoretically secure, and achieves a trade-off between the number of secrets, privacy threshold, and dropout tolerance. Riding on the capabilities of FastShare, we prove that FastSecAgg is (i) secure against the server colluding with any subset of some constant fraction (e.g. $sim10%$) of the clients in the honest-but-curious setting; and (ii) tolerates dropouts of a random subset of some constant fraction (e.g. $sim10%$) of the clients. FastSecAgg achieves significantly smaller computation cost than existing schemes while achieving the same (orderwise) communication cost. In addition, it guarantees security against adaptive adversaries, which can perform client corruptions dynamically during the execution of the protocol.
85 - Jinhyun So , Basak Guler , 2020
Federated learning is a distributed framework for training machine learning models over the data residing at mobile devices, while protecting the privacy of individual users. A major bottleneck in scaling federated learning to a large number of users is the overhead of secure model aggregation across many users. In particular, the overhead of the state-of-the-art protocols for secure model aggregation grows quadratically with the number of users. In this paper, we propose the first secure aggregation framework, named Turbo-Aggregate, that in a network with $N$ users achieves a secure aggregation overhead of $O(Nlog{N})$, as opposed to $O(N^2)$, while tolerating up to a user dropout rate of $50%$. Turbo-Aggregate employs a multi-group circular strategy for efficient model aggregation, and leverages additive secret sharing and novel coding techniques for injecting aggregation redundancy in order to handle user dropouts while guaranteeing user privacy. We experimentally demonstrate that Turbo-Aggregate achieves a total running time that grows almost linear in the number of users, and provides up to $40times$ speedup over the state-of-the-art protocols with up to $N=200$ users. Our experiments also demonstrate the impact of model size and bandwidth on the performance of Turbo-Aggregate.
Secure aggregation is a critical component in federated learning, which enables the server to learn the aggregate model of the users without observing their local models. Conventionally, secure aggregation algorithms focus only on ensuring the privac y of individual users in a single training round. We contend that such designs can lead to significant privacy leakages over multiple training rounds, due to partial user selection/participation at each round of federated learning. In fact, we empirically show that the conventional random user selection strategies for federated learning lead to leaking users individual models within number of rounds linear in the number of users. To address this challenge, we introduce a secure aggregation framework with multi-round privacy guarantees. In particular, we introduce a new metric to quantify the privacy guarantees of federated learning over multiple training rounds, and develop a structured user selection strategy that guarantees the long-term privacy of each user (over any number of training rounds). Our framework also carefully accounts for the fairness and the average number of participating users at each round. We perform several experiments on MNIST and CIFAR-10 datasets in the IID and the non-IID settings to demonstrate the performance improvement over the baseline algorithms, both in terms of privacy protection and test accuracy.
Since 2014, the NIH funded iDASH (integrating Data for Analysis, Anonymization, SHaring) National Center for Biomedical Computing has hosted yearly competitions on the topic of private computing for genomic data. For one track of the 2020 iteration o f this competition, participants were challenged to produce an approach to federated learning (FL) training of genomic cancer prediction models using differential privacy (DP), with submissions ranked according to held-out test accuracy for a given set of DP budgets. More precisely, in this track, we are tasked with training a supervised model for the prediction of breast cancer occurrence from genomic data split between two virtual centers while ensuring data privacy with respect to model transfer via DP. In this article, we present our 3rd place submission to this competition. During the competition, we encountered two main challenges discussed in this article: i) ensuring correctness of the privacy budget evaluation and ii) achieving an acceptable trade-off between prediction performance and privacy budget.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا