ﻻ يوجد ملخص باللغة العربية
The quantum circuit layout problem is to map a quantum circuit to a quantum computing device, such that the constraints of the device are satisfied. The optimality of a layout method is expressed, in our case, by the depth of the resulting circuits. We introduce QXX, a novel search-based layout method, which includes a configurable Gaussian function used to: emph{i)} estimate the depth of the generated circuits; emph{ii)} determine the circuit region that influences most the depth. We optimize the parameters of the QXX model using an improved version of random search (weighted random search). To speed up the parameter optimization, we train and deploy QXX-MLP, an MLP neural network which can predict the depth of the circuit layouts generated by QXX. We experimentally compare the two approaches (QXX and QXX-MLP) with the baseline: exponential time exhaustive search optimization. According to our results: 1) QXX is on par with state-of-the-art layout methods, 2) the Gaussian function is a fast and accurate optimality estimator. We present empiric evidence for the feasibility of learning the layout method using approximation.
Precise nanofabrication represents a critical challenge to developing semiconductor quantum-dot qubits for practical quantum computation. Here, we design and train a convolutional neural network to interpret in-line scanning electron micrographs and
In recent years, there is a growing interest in using quantum computers for solving combinatorial optimization problems. In this work, we developed a generic, machine learning-based framework for mapping continuous-space inverse design problems into
The current phase of quantum computing is in the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ devices, two-qubit gates such as CNOTs are much noisier than single-qubit gates, so it is essential to minimize their count. Quantum circuit synthes
Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Since quantum systems produce counter-intuitive patterns believed not to be efficiently produced by cl
This paper addresses quantum circuit mapping for Noisy Intermediate-Scale Quantum (NISQ) computers. Since NISQ computers constraint two-qubit operations on limited couplings, an input circuit must be transformed into an equivalent output circuit obey