ﻻ يوجد ملخص باللغة العربية
High-order interactive features capture the correlation between different columns and thus are promising to enhance various learning tasks on ubiquitous tabular data. To automate the generation of interactive features, existing works either explicitly traverse the feature space or implicitly express the interactions via intermediate activations of some designed models. These two kinds of methods show that there is essentially a trade-off between feature interpretability and search efficiency. To possess both of their merits, we propose a novel method named Feature Interaction Via Edge Search (FIVES), which formulates the task of interactive feature generation as searching for edges on the defined feature graph. Specifically, we first present our theoretical evidence that motivates us to search for useful interactive features with increasing order. Then we instantiate this search strategy by optimizing both a dedicated graph neural network (GNN) and the adjacency tensor associated with the defined feature graph. In this way, the proposed FIVES method simplifies the time-consuming traversal as a typical training course of GNN and enables explicit feature generation according to the learned adjacency tensor. Experimental results on both benchmark and real-world datasets show the advantages of FIVES over several state-of-the-art methods. Moreover, the interactive features identified by FIVES are deployed on the recommender system of Taobao, a worldwide leading e-commerce platform. Results of an online A/B testing further verify the effectiveness of the proposed method FIVES, and we further provide FIVES as AI utilities for the customers of Alibaba Cloud.
For sake of reliability, it is necessary for models in real-world applications to be both powerful and globally interpretable. Simple classifiers, e.g., Logistic Regression (LR), are globally interpretable, but not powerful enough to model complex no
Feature crossing captures interactions among categorical features and is useful to enhance learning from tabular data in real-world businesses. In this paper, we present AutoCross, an automatic feature crossing tool provided by 4Paradigm to its custo
A new method for local and global explanation of the machine learning black-box model predictions by tabular data is proposed. It is implemented as a system called AFEX (Attention-like Feature EXplanation) and consisting of two main parts. The first
Automated machine learning (AutoML) can produce complex model ensembles by stacking, bagging, and boosting many individual models like trees, deep networks, and nearest neighbor estimators. While highly accurate, the resulting predictors are large, s
Genome-wide association studies (GWAS) have achieved great success in the genetic study of Alzheimers disease (AD). Collaborative imaging genetics studies across different research institutions show the effectiveness of detecting genetic risk factors