ترغب بنشر مسار تعليمي؟ اضغط هنا

Cyber Deception for Computer and Network Security: Survey and Challenges

137   0   0.0 ( 0 )
 نشر من قبل Shangqing Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cyber deception has recently received increasing attentions as a promising mechanism for proactive cyber defense. Cyber deception strategies aim at injecting intentionally falsified information to sabotage the early stage of attack reconnaissance and planning in order to render the final attack action harmless or ineffective. Motivated by recent advances in cyber deception research, we in this paper provide a formal view of cyber deception, and review high-level deception schemes and actions. We also summarize and classify recent research results of cyber defense techniques built upon the concept of cyber deception, including game-theoretic modeling at the strategic level, network-level deception, in-host-system deception and cryptography based deception. Finally, we lay out and discuss in detail the research challenges towards developing full-fledged cyber deception frameworks and mechanisms.



قيم البحث

اقرأ أيضاً

These days, cyber-criminals target humans rather than machines since they try to accomplish their malicious intentions by exploiting the weaknesses of end users. Thus, human vulnerabilities pose a serious threat to the security and integrity of compu ter systems and data. The human tendency to trust and help others, as well as personal, social, and cultural characteristics, are indicative of the level of susceptibility that one may exhibit towards certain attack types and deception strategies. This work aims to investigate the factors that affect human susceptibility by studying the existing literature related to this subject. The objective is also to explore and describe state of the art human vulnerability assessment models, current prevention, and mitigation approaches regarding user susceptibility, as well as educational and awareness raising training strategies. Following the review of the literature, several conclusions are reached. Among them, Human Vulnerability Assessment has been included in various frameworks aiming to assess the cyber security capacity of organizations, but it concerns a one time assessment rather than a continuous practice. Moreover, human maliciousness is still neglected from current Human Vulnerability Assessment frameworks; thus, insider threat actors evade identification, which may lead to an increased cyber security risk. Finally, this work proposes a user susceptibility profile according to the factors stemming from our research.
Defending computer networks from cyber attack requires coordinating actions across multiple nodes based on imperfect indicators of compromise while minimizing disruptions to network operations. Advanced attacks can progress with few observable signal s over several months before execution. The resulting sequential decision problem has large observation and action spaces and a long time-horizon, making it difficult to solve with existing methods. In this work, we present techniques to scale deep reinforcement learning to solve the cyber security orchestration problem for large industrial control networks. We propose a novel attention-based neural architecture with size complexity that is invariant to the size of the network under protection. A pre-training curriculum is presented to overcome early exploration difficulty. Experiments show in that the proposed approaches greatly improve both the learning sample complexity and converged policy performance over baseline methods in simulation.
Sixth-generation (6G) mobile networks will have to cope with diverse threats on a space-air-ground integrated network environment, novel technologies, and an accessible user information explosion. However, for now, security and privacy issues for 6G remain largely in concept. This survey provides a systematic overview of security and privacy issues based on prospective technologies for 6G in the physical, connection, and service layers, as well as through lessons learned from the failures of existing security architectures and state-of-the-art defenses. Two key lessons learned are as follows. First, other than inheriting vulnerabilities from the previous generations, 6G has new threat vectors from new radio technologies, such as the exposed location of radio stripes in ultra-massive MIMO systems at Terahertz bands and attacks against pervasive intelligence. Second, physical layer protection, deep network slicing, quantum-safe communications, artificial intelligence (AI) security, platform-agnostic security, real-time adaptive security, and novel data protection mechanisms such as distributed ledgers and differential privacy are the top promising techniques to mitigate the attack magnitude and personal data breaches substantially.
We introduce deceptive signaling framework as a new defense measure against advanced adversaries in cyber-physical systems. In general, adversaries look for system-related information, e.g., the underlying state of the system, in order to learn the s ystem dynamics and to receive useful feedback regarding the success/failure of their actions so as to carry out their malicious task. To this end, we craft the information that is accessible to adversaries strategically in order to control their actions in a way that will benefit the system, indirectly and without any explicit enforcement. Under the solution concept of game-theoretic hierarchical equilibrium, we arrive at a semi-definite programming problem equivalent to the infinite-dimensional optimization problem faced by the defender while selecting the best strategy when the information of interest is Gaussian and both sides have quadratic cost functions. The equivalence result holds also for the scenarios where the defender can have partial or noisy measurements or the objective of the adversary is not known. We show the optimality of linear signaling rule within the general class of measurable policies in communication scenarios and also compute the optimal linear signaling rule in control scenarios.
The increased adoption of Artificial Intelligence (AI) presents an opportunity to solve many socio-economic and environmental challenges; however, this cannot happen without securing AI-enabled technologies. In recent years, most AI models are vulner able to advanced and sophisticated hacking techniques. This challenge has motivated concerted research efforts into adversarial AI, with the aim of developing robust machine and deep learning models that are resilient to different types of adversarial scenarios. In this paper, we present a holistic cyber security review that demonstrates adversarial attacks against AI applications, including aspects such as adversarial knowledge and capabilities, as well as existing methods for generating adversarial examples and existing cyber defence models. We explain mathematical AI models, especially new variants of reinforcement and federated learning, to demonstrate how attack vectors would exploit vulnerabilities of AI models. We also propose a systematic framework for demonstrating attack techniques against AI applications and reviewed several cyber defences that would protect AI applications against those attacks. We also highlight the importance of understanding the adversarial goals and their capabilities, especially the recent attacks against industry applications, to develop adaptive defences that assess to secure AI applications. Finally, we describe the main challenges and future research directions in the domain of security and privacy of AI technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا