ترغب بنشر مسار تعليمي؟ اضغط هنا

(Non equilibrium) Thermodynamics of Integrable models: The Generalized Gibbs Ensemble description of the classical Neumann Model

354   0   0.0 ( 0 )
 نشر من قبل Leticia Cugliandolo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a classical integrable (Neumann) model describing the motion of a particle on the sphere, subject to harmonic forces. We tackle the problem in the infinite dimensional limit by introducing a soft version in which the spherical constraint is imposed only on average over initial conditions. We show that the Generalized Gibbs Ensemble captures the long-time averages of the soft model. We reveal the full dynamic phase diagram with extended, quasi-condensed, coordinate-, and coordinate and momentum-condensed phases. The scaling properties of the fluctuations allow us to establish in which cases the strict and soft spherical constraints are equivalent, confirming the validity of the GGE hypothesis for the Neumann model on a large portion of the dynamic phase diagram.



قيم البحث

اقرأ أيضاً

The generalized Gibbs ensemble (GGE), which involves multiple conserved quantities other than the Hamiltonian, has served as the statistical-mechanical description of the long-time behavior for several isolated integrable quantum systems. The GGE may involve a noncommutative set of conserved quantities in view of the maximum entropy principle, and show that the GGE thus generalized (noncommutative GGE, NCGGE) gives a more qualitatively accurate description of the long-time behaviors than that of the conventional GGE. Providing a clear understanding of why the (NC)GGE well describes the long-time behaviors, we construct, for noninteracting models, the exact NCGGE that describes the long-time behaviors without an error even at finite system size. It is noteworthy that the NCGGE involves nonlocal conserved quantities, which can be necessary for describing long-time behaviors of local observables. We also give some extensions of the NCGGE and demonstrate how accurately they describe the long-time behaviors of few-body observables.
63 - Bo-Bo Wei 2017
In this work, we show that the dissipation in a many-body system under an arbitrary non-equilibrium process is related to the R{e}nyi divergences between two states along the forward and reversed dynamics under very general family of initial conditio ns. This relation generalizes the links between dissipated work and Renyi divergences to quantum systems with conserved quantities whose equilibrium state is described by the generalized Gibbs ensemble. The relation is applicable for quantum systems with conserved quantities and can be applied to protocols driving the system between integrable and chaotic regimes. We demonstrate our ideas by considering the one-dimensional transverse quantum Ising model which is driven out of equilibrium by the instantaneous switching of the transverse magnetic field.
Using generalized hydrodynamics (GHD), we develop the Euler hydrodynamics of classical integrable field theory. Classical field GHD is based on a known formalism for Gibbs ensembles of classical fields, that resembles the thermodynamic Bethe ansatz o f quantum models, which we extend to generalized Gibbs ensembles (GGEs). In general, GHD must take into account both solitonic and radiative modes of classical fields. We observe that the quasi-particle formulation of GHD remains valid for radiative modes, even though these do not display particle-like properties in their precise dynamics. We point out that because of a UV catastrophe similar to that of black body radiation, radiative modes suffer from divergences that restrict the set of finite-average observables; this set is larger for GGEs with higher conserved charges. We concentrate on the sinh-Gordon model, which only has radiative modes, and study transport in the domain-wall initial problem as well as Euler-scale correlations in GGEs. We confirm a variety of exact GHD predictions, including those coming from hydrodynamic projection theory, by comparing with Metropolis numerical evaluations.
We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body interactions drawn from a Gaussian probability distribution. In the statistical physics framework, the potential energy is of the so-called $p=2$ spherical di sordered kind. Most importantly for our setting, the energy conserving dynamics are equivalent to the ones of the Neumann integrable system. We take initial conditions in thermal equilibrium and we subsequently evolve the configurations with Newton dynamics dictated by a different Hamiltonian. We identify three dynamical phases depending on the parameters that characterise the initial state and the final Hamiltonian. We obtain the {it global} dynamical observables with numerical and analytic methods and we show that, in most cases, they are out of thermal equilibrium. We note, however, that for shallow quenches from the condensed phase the dynamics are close to (though not at) thermal equilibrium. Surprisingly enough, for a particular relation between parameters the global observables comply Gibbs-Boltzmann equilibrium. We next set the analysis of the system with finite number of degrees of freedom in terms of $N$ non-linearly coupled modes. We evaluate the mode temperatures and we relate them to the frequency-dependent effective temperature measured with the fluctuation-dissipation relation in the frequency domain, similarly to what was recently proposed for quantum integrable cases. Finally, we analyse the $N-1$ integrals of motion and we use them to show that the system is out of equilibrium in all phases, even for parameters that show an apparent Gibbs-Boltzmann behaviour of global observables. We elaborate on the role played by these constants of motion in the post-quench dynamics and we briefly discuss the possible description of the asymptotic dynamics in terms of a Generalised Gibbs Ensemble.
The local physical properties of an isolated quantum statistical system in the stationary state reached long after a quench are generically described by the Gibbs ensemble, which involves only its Hamiltonian and the temperature as a parameter. If th e system is instead integrable, additional quantities conserved by the dynamics intervene in the description of the stationary state. The resulting generalized Gibbs ensemble involves a number of temperature-like parameters, the determination of which is practically difficult. Here we argue that in a number of simple models these parameters can be effectively determined by using fluctuation-dissipation relationships between response and correlation functions of natural observables, quantities which are accessible in experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا