ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hybrid Approach to Audio-to-Score Alignment

120   0   0.0 ( 0 )
 نشر من قبل Ruchit Agrawal
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Audio-to-score alignment aims at generating an accurate mapping between a performance audio and the score of a given piece. Standard alignment methods are based on Dynamic Time Warping (DTW) and employ handcrafted features. We explore the usage of neural networks as a preprocessing step for DTW-based automatic alignment methods. Experiments on music data from different acoustic conditions demonstrate that this method generates robust alignments whilst being adaptable at the same time.



قيم البحث

اقرأ أيضاً

Automatic lyrics to polyphonic audio alignment is a challenging task not only because the vocals are corrupted by background music, but also there is a lack of annotated polyphonic corpus for effective acoustic modeling. In this work, we propose (1) using additional speech and music-informed features and (2) adapting the acoustic models trained on a large amount of solo singing vocals towards polyphonic music using a small amount of in-domain data. Incorporating additional information such as voicing and auditory features together with conventional acoustic features aims to bring robustness against the increased spectro-temporal variations in singing vocals. By adapting the acoustic model using a small amount of polyphonic audio data, we reduce the domain mismatch between training and testing data. We perform several alignment experiments and present an in-depth alignment error analysis on acoustic features, and model adaptation techniques. The results demonstrate that the proposed strategy provides a significant error reduction of word boundary alignment over comparable existing systems, especially on more challenging polyphonic data with long-duration musical interludes.
We present AlignNet, a model that synchronizes videos with reference audios under non-uniform and irregular misalignments. AlignNet learns the end-to-end dense correspondence between each frame of a video and an audio. Our method is designed accordin g to simple and well-established principles: attention, pyramidal processing, warping, and affinity function. Together with the model, we release a dancing dataset Dance50 for training and evaluation. Qualitative, quantitative and subjective evaluation results on dance-music alignment and speech-lip alignment demonstrate that our method far outperforms the state-of-the-art methods. Project video and code are available at https://jianrenw.github.io/AlignNet.
The identification of structural differences between a music performance and the score is a challenging yet integral step of audio-to-score alignment, an important subtask of music information retrieval. We present a novel method to detect such diffe rences between the score and performance for a given piece of music using progressively dilated convolutional neural networks. Our method incorporates varying dilation rates at different layers to capture both short-term and long-term context, and can be employed successfully in the presence of limited annotated data. We conduct experiments on audio recordings of real performances that differ structurally from the score, and our results demonstrate that our models outperform standard methods for structure-aware audio-to-score alignment.
Audio captioning aims to automatically generate a natural language description of an audio clip. Most captioning models follow an encoder-decoder architecture, where the decoder predicts words based on the audio features extracted by the encoder. Con volutional neural networks (CNNs) and recurrent neural networks (RNNs) are often used as the audio encoder. However, CNNs can be limited in modelling temporal relationships among the time frames in an audio signal, while RNNs can be limited in modelling the long-range dependencies among the time frames. In this paper, we propose an Audio Captioning Transformer (ACT), which is a full Transformer network based on an encoder-decoder architecture and is totally convolution-free. The proposed method has a better ability to model the global information within an audio signal as well as capture temporal relationships between audio events. We evaluate our model on AudioCaps, which is the largest audio captioning dataset publicly available. Our model shows competitive performance compared to other state-of-the-art approaches.
Audio-to-score alignment aims at generating an accurate mapping between a performance audio and the score of a given piece. Standard alignment methods are based on Dynamic Time Warping (DTW) and employ handcrafted features, which cannot be adapted to different acoustic conditions. We propose a method to overcome this limitation using learned frame similarity for audio-to-score alignment. We focus on offline audio-to-score alignment of piano music. Experiments on music data from different acoustic conditions demonstrate that our method achieves higher alignment accuracy than a standard DTW-based method that uses handcrafted features, and generates robust alignments whilst being adaptable to different domains at the same time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا