ﻻ يوجد ملخص باللغة العربية
We consider an Supersymmetric extension of the Standard Model with some extra Higgs doublets and a global $(B - L)$, where $B$ and $L$ are the usual baryonic and lepton number respectivelly, and ${cal Z}_{3} otimes {cal Z}^{prime}_{3}$ symmetries of the non-SUSY model presented at [1]..
We propose and study a novel extension of the Standard Model based on the B-L gauge symmetry that can account for dark matter and neutrino masses. In this model, right-handed neutrinos are absent and the gauge anomalies are canceled instead by four c
We consider an extension of the standard electroweak model with three Higgs doublets and global $B-L$ and $mathbb{Z}_2$ symmetries. Two of the scalar doublets are inert due to the $mathbb{Z}_2$ symmetry. We calculated all the mass spectra in the scal
We consider a model with three Higgs doublet in a discrete $B - Ltimes mathbb{Z}_3$ discrete symmetries. Two of the scalar doublets are inert due to the $mathbb{Z}_3$ symmetry. We calculated all the mass spectra in the scalar and lepton sectors and accommodate the leptonic mixing matrix as well.
Several models of neutrino masses predict the existence of neutral heavy leptons. Here, we review current constraints on heavy neutrinos and apply a new formalism separating new physics from Standard Model. We discuss also the indirect effect of extra heavy neutrinos in oscillation experiments.
In this article we consider the Standard Model extended by a number of (light) right-handed neutrinos, and assume the presence of some heavy physics that cannot be directly produced, but can be probed by its low-energy effective interactions. Within