ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground-Based Transmission Spectroscopy with FORS2: A featureless optical transmission spectrum and detection of H$_2$O for the ultra-hot Jupiter WASP-103b

88   0   0.0 ( 0 )
 نشر من قبل Jamie Wilson Mr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Wilson




اسأل ChatGPT حول البحث

We report ground-based transmission spectroscopy of the highly irradiated and ultra-short period hot-Jupiter WASP-103b covering the wavelength range $approx$ 400-600 nm using the FORS2 instrument on the Very Large Telescope. The light curves show significant time-correlated noise which is mainly invariant in wavelength and which we model using a Gaussian process. The precision of our transmission spectrum is improved by applying a common-mode correction derived from the white light curve, reaching typical uncertainties in transit depth of $approx$ 2x10$^{-4}$ in wavelength bins of 15 nm. After correction for flux contamination from a blended companion star, our observations reveal a featureless spectrum across the full range of the FORS2 observations and we are unable to confirm the Na absorption previously inferred using Gemini/GMOS or the strong Rayleigh scattering observed using broad-band light curves. We performed a Bayesian atmospheric retrieval on the full optical-infrared transmission spectrum using the additional data from Gemini/GMOS, HST/WFC3 and Spitzer observations and recover evidence for H$_2$O absorption at the 4.0$sigma$ level. However, our observations are not able to completely rule out the presence of Na, which is found at 2.0$sigma$ in our retrievals. This may in part be explained by patchy/inhomogeneous clouds or hazes damping any absorption features in our FORS2 spectrum, but an inherently small scale height also makes this feature challenging to probe from the ground. Our results nonetheless demonstrate the continuing potential of ground-based observations for investigating exoplanet atmospheres and emphasise the need for the application of consistent and robust statistical techniques to low-resolution spectra in the presence of instrumental systematics.



قيم البحث

اقرأ أيضاً

We present ground-based optical transmission spectroscopy of the low-density hot Jupiter WASP-88b covering the wavelength range 4413-8333 {AA} with the FORS2 spectrograph on the Very Large Telescope. The FORS2 white light curves exhibit a significant time-correlated noise which we model using a Gaussian Process and remove as a wavelength-independent component from the spectroscopic light curves. We analyse complementary photometric observations from the Transiting Exoplanet Survey Satellite and refine the system properties and ephemeris. We find a featureless transmission spectrum with increased absorption towards shorter wavelengths. We perform an atmospheric retrieval analysis with the AURA code, finding tentative evidence for haze in the upper atmospheric layers and a lower likelihood for a dense cloud deck. Whilst our retrieval analysis results point toward clouds and hazes, further evidence is needed to definitively reject a clear-sky scenario.
62 - Elyar Sedaghati 2016
We present FORS2 (attached to ESOs Very Large Telescope) observations of the exoplanet WASP-17b during its primary transit, for the purpose of differential spectrophotometry analysis. We use the instrument in its Mask eXchange Unit (MXU) mode to simu ltaneously obtain low resolution spectra of the planet hosting star, as well as several reference stars in the field of view. The integration of these spectra within broadband and smaller 100$AA$ bins provides us with white and spectrophotometric light curves, from 5700 to 8000$AA$. Through modelling the white light curve, we obtain refined bulk and transit parameters of the planet, as well as wavelength-dependent variations of the planetary radius from smaller spectral bins through which the transmission spectrum is obtained. The inference of transit parameters, as well as the noise statistics, is performed using a Gaussian Process model. We achieve a typical precision in the transit depth of a few hundred parts per million from various transit light curves. From the transmission spectra we rule out a flat spectrum at >3$sigma$ and detect marginal presence of the pressure-broadened sodium wings. Furthermore, we detect the wing of the potassium absorption line in the upper atmosphere of the planet with 3$sigma$ confidence, both facts pointing to a relatively shallow temperature gradient of the atmosphere. These conclusions are mostly consistent with previous studies of this exo-atmosphere, although previous potassium measurements have been inconclusive.
We present a new ground-based optical transmission spectrum of the ultrahot Jupiter WASP-103b ($T_{eq} = 2484$K). Our transmission spectrum is the result of combining five new transits from the ACCESS survey and two new transits from the LRG-BEASTS s urvey with a reanalysis of three archival Gemini/GMOS transits and one VLT/FORS2 transit. Our combined 11-transit transmission spectrum covers a wavelength range of 3900--9450A with a median uncertainty in the transit depth of 148 parts-per-million, which is less than one atmospheric scale height of the planet. In our retrieval analysis of WASP-103bs combined optical and infrared transmission spectrum, we find strong evidence for unocculted bright regions ($4.3sigma$) and weak evidence for H$_2$O ($1.9sigma$), HCN ($1.7sigma$), and TiO ($2.1sigma$), which could be responsible for WASP-103bs observed temperature inversion. Our optical transmission spectrum shows significant structure that is in excellent agreement with the extensively studied ultrahot Jupiter WASP-121b, for which the presence of VO has been inferred. For WASP-103b, we find that VO can only provide a reasonable fit to the data if its abundance is implausibly high and we do not account for stellar activity. Our results highlight the precision that can be achieved by ground-based observations and the impacts that stellar activity from F-type stars can have on the interpretation of exoplanet transmission spectra.
277 - E. Sedaghati 2015
In the past few years, the study of exoplanets has evolved from being pure discovery, then being more exploratory in nature and finally becoming very quantitative. In particular, transmission spectroscopy now allows the study of exoplanetary atmosphe res. Such studies rely heavily on space-based or large ground-based facilities, because one needs to perform time-resolved, high signal-to-noise spectroscopy. The very recent exchange of the prisms of the FORS2 atmospheric diffraction corrector on ESOs Very Large Telescope should allow us to reach higher data quality than was ever possible before. With FORS2, we have obtained the first optical ground-based transmission spectrum of WASP-19b, with 20 nm resolution in the 550--830 nm range. For this planet, the data set represents the highest resolution transmission spectrum obtained to date. We detect large deviations from planetary atmospheric models in the transmission spectrum redwards of 790 nm, indicating either additional sources of opacity not included in the current atmospheric models for WASP-19b or additional, unexplored sources of systematics. Nonetheless, this work shows the new potential of FORS2 for studying the atmospheres of exoplanets in greater detail than has been possible so far.
We present a ground-based optical transmission spectrum for the warm Saturn-mass exoplanet WASP-110b from two transit observations made with the FOcal Reducer and Spectrograph (FORS2) on the Very Large Telescope (VLT). The spectrum covers the wavelen gth range from 4000 to 8333AA, which is binned in 46 transit depths measured to an averaged precision of 220 parts per million (ppm) over an averaged 80AA~bin for a Vmag=12.8 star. The measured transit depths are unaffected by a dilution from a close A-type field dwarf, which was fully resolved. The overall main characteristic of the transmission spectrum is an increasing radius with wavelength and a lack of the theoretically predicted pressure-broadened sodium and potassium absorption features for a cloud-free atmosphere. We analyze archival high-resolution optical spectroscopy and find evidence for low to moderate activity of the host star, which we take into account in the atmospheric retrieval analysis. Using the AURA retrieval code, we find that the observed transmission spectrum can be best explained by a combination of unocculted stellar faculae and a cloud deck. Transmission spectra of cloud-free and hazy atmospheres are rejected at a high confidence. With a possible cloud deck at its terminator, WASP-110b joins the increasing population of irradiated hot-Jupiter exoplanets with cloudy atmospheres observed in transmission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا