ﻻ يوجد ملخص باللغة العربية
COVID-19 is a global epidemic. Till now, there is no remedy for this epidemic. However, isolation and social distancing are seemed to be effective preventive measures to control this pandemic. Therefore, in this paper, an optimization problem is formulated that accommodates both isolation and social distancing features of the individuals. To promote social distancing, we solve the formulated problem by applying a noncooperative game that can provide an incentive for maintaining social distancing to prevent the spread of COVID-19. Furthermore, the sustainability of the lockdown policy is interpreted with the help of our proposed game-theoretic incentive model for maintaining social distancing where there exists a Nash equilibrium. Finally, we perform an extensive numerical analysis that shows the effectiveness of the proposed approach in terms of achieving the desired social-distancing to prevent the outbreak of the COVID-19 in a noncooperative environment. Numerical results show that the individual incentive increases more than 85% with an increasing percentage of home isolation from 25% to 100% for all considered scenarios. The numerical results also demonstrate that in a particular percentage of home isolation, the individual incentive decreases with an increasing number of individuals.
The UK government announced its first wave of lockdown easing on 10 May 2020, two months after the non-pharmaceutical measures to reduce the spread of COVID-19 were first introduced on 23 March 2020. Analysis of reported case rate data from Public He
In this note, we discuss the impact of the COVID-19 outbreak from the perspective of the market-structure. We observe that the US market-structure has dramatically changed during the past four weeks and that the level of change has followed the numbe
Since two people came down a county of north Seattle with positive COVID-19 (coronavirus-19) in 2019, the current total cases in the United States (U.S.) are over 12 million. Predicting the pandemic trend under effective variables is crucial to help
Some ideas are presented about the physical motivation of the apparent capacity of generalized logistic equations to describe the outbreak of the COVID-19 infection, and in general of quite many other epidemics. The main focuses here are: the complex
We present Coronavirus disease 2019 (COVID-19) statistics in China dataset: daily statistics of the COVID-19 outbreak in China at the city/county level. For each city/country, we include the six most important numbers for epidemic research: daily new