ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-resolved fast turbulent dynamo in a laser plasma

116   0   0.0 ( 0 )
 نشر من قبل Archie Bott
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas ($mathrm{Pm} < 1$). However, the same framework proposes that the fluctuation dynamo should operate differently when $mathrm{Pm} gtrsim 1$, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports a new experiment that creates a laboratory $mathrm{Pm} gtrsim 1$ plasma dynamo for the first time. We provide a time-resolved characterization of the plasmas evolution, measuring temperatures, densities, flow velocities and magnetic fields, which allows us to explore various stages of the fluctuation dynamos operation. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude from its initial value and saturate dynamically. It is shown that the growth of these fields occurs exponentially at a rate that is much greater than the turnover rate of the driving-scale stochastic motions. Our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized MHD simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.



قيم البحث

اقرأ أيضاً

Magnetic fields are ubiquitous in the Universe. Extragalactic disks, halos and clusters have consistently been shown, via diffuse radio-synchrotron emission and Faraday rotation measurements, to exhibit magnetic field strengths ranging from a few nG to tens of $mu$G. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. Here we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization of the Universe.
153 - F. Rincon 2015
Magnetic fields pervade the entire Universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times, up to $mu$Gauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions and on scales of at least tens of kiloparsecs, is a major puzzle largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context, however extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic-field growth and sustainment through an efficient turbulent dynamo instability is possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a six-dimensional phase space necessary to answer this question have until recently remained beyond computational capabilities. Here, we show by means of such simulations that magnetic-field amplification via a dynamo instability does occur in a stochastically-driven, non-relativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium (ICM) turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.
We investigate an efficient mechanism for generating magnetic fields in turbulent, collisionless plasmas. By using fully kinetic, particle-in-cell simulations of an initially non-magnetized plasma, we inspect the genesis of magnetization, in a nonlin ear regime. The complex motion is initiated via a Taylor-Green vortex, and the plasma locally develops strong electron temperature anisotropy, due to the strain tensor of the turbulent flow. Subsequently, in a domino effect, the anisotropy triggers a Weibel instability, localized in space. In such active wave-particle interaction regions, the magnetic field seed grows exponentially and spreads to larger scales due to the interaction with the underlying stirring motion. Such a self-feeding process might explain magneto-genesis in a variety of astrophysical plasmas, wherever turbulence is present.
95 - P.Tzeferacos , A. Rigby , A. Bott 2017
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and study dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.
Time-resolved optical emission spectroscopic measurements of a plasma generated by irradiating a Cr target using 60 picosecond (ps) and 300 ps laser pulses is carried out to investigate the variation in the linewidth ($deltalambda$) of emission from neutrals and ions for increasing ambient pressures. Measurements ranging from 10$^{-6}$ Torr to 10$^2$ Torr show a distinctly different variation in the $deltalambda$ of neutrals (Cr I) compared to that of singly ionized Cr (Cr II), for both irradiations. $deltalambda$ increases monotonously with pressure for Cr II, but an oscillation is evident at intermediate pressures for Cr I. This oscillation does not depend on the laser pulse widths used. In spite of the differences in the plasma formation mechanisms, it is experimentally found that there is an optimum intermediate background pressure for which $deltalambda$ of neutrals drops to a minimum. Importantly, these results underline the fact that for intermediate pressures, the usual practice of calculating the plasma number density from the $deltalambda$ of neutrals needs to be judiciously done, to avoid reaching inaccurate conclusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا