ﻻ يوجد ملخص باللغة العربية
Gravitational waves may be one of the few direct observables produced by ultralight bosons, conjectured dark matter candidates that could be the key to several problems in particle theory, high-energy physics and cosmology. These axionlike particles could spontaneously form clouds around astrophysical black holes, leading to potent emission of continuous gravitational waves that could be detected by instruments on the ground and in space. Although this scenario has been thoroughly studied, it has not been yet appreciated that both types of detector may be used in tandem (a practice known as multibanding). In this paper, we show that future gravitational-wave detectors on the ground and in space will be able to work together to detect ultralight bosons with masses $25 lesssim mu/left(10^{-15}, mathrm{eV}right)lesssim 500$. In detecting binary-black-hole inspirals, the LISA space mission will provide crucial information enabling future ground-based detectors, like Cosmic Explorer or Einstein Telescope, to search for signals from boson clouds around the individual black holes in the observed binaries. We lay out the detection strategy and, focusing on scalar bosons, chart the suitable parameter space. We study the impact of ignorance about the systems history, including cloud age and black hole spin. We also consider the tidal resonances that may destroy the boson cloud before its gravitational signal becomes detectable by a ground-based follow-up. Finally, we show how to take all of these factors into account, together with uncertainties in the LISA measurement, to obtain boson mass constraints from the ground-based observation facilitated by LISA.
Ultralight bosons can induce superradiant instabilities in spinning black holes, tapping their rotational energy to trigger the growth of a bosonic condensate. Possible observational imprints of these boson clouds include (i) direct detection of the
Ultralight bosons can be abundantly produced through superradiance process by a spinning black hole and form a bound state with hydrogen-like spectrum. We show that such a gravitational atom typically possesses anomalously large mass quadrupole and l
The ultralight boson is a promising candidate for dark matter. These bosons may form long-lived bosonic clouds surrounding rotating black holes via superradiance, acting as sources of gravity and affecting the propagation of gravitational waves aroun
Clouds of ultralight bosons - such as axions - can form around a rapidly spinning black hole, if the black hole radius is comparable to the bosons wavelength. The cloud rapidly extracts angular momentum from the black hole, and reduces it to a charac
The direct measurement of gravitational waves is a powerful tool for surveying the population of black holes across the universe. The first gravitational wave catalog from LIGO has detected black holes as heavy as $sim50~M_odot$, colliding when our U