ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deligne complex for Artin Monoids

89   0   0.0 ( 0 )
 نشر من قبل Rachael Boyd
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we introduce and study some geometric objects associated to Artin monoids. The Deligne complex for an Artin group is a cube complex that was introduced by the second author and Davis (1995) to study the K(pi,1) conjecture for these groups. Using a notion of Artin monoid cosets, we construct a version of the Deligne complex for Artin monoids. We show that for any Artin monoid this cube complex is contractible. Furthermore, we study the embedding of the monoid Deligne complex into the Deligne complex for the corresponding Artin group. We show that for any Artin group this is a locally isometric embedding. In the case of FC-type Artin groups this result can be strengthened to a globally isometric embedding, and it follows that the monoid Deligne complex is CAT(0) and its image in the Deligne complex is convex. We also consider the Cayley graph of an Artin group, and investigate properties of the subgraph spanned by elements of the Artin monoid. Our final results show that for a finite type Artin group, the monoid Cayley graph embeds isometrically, but not quasi-convexly, into the group Cayley graph.



قيم البحث

اقرأ أيضاً

The Tits Conjecture, proved by Crisp and Paris, states that squares of the standard generators of any Artin group generate an obvious right-angled Artin subgroup. We consider a larger set of elements consisting of all the centers of the irreducible s pherical special subgroups of the Artin group, and conjecture that sufficiently large powers of those elements generate an obvious right-angled Artin subgroup. This alleged right-angled Artin subgroup is in some sense as large as possible; its nerve is homeomorphic to the nerve of the ambient Artin group. We verify this conjecture for the class of locally reducible Artin groups, which includes all $2$-dimensional Artin groups, and for spherical Artin groups of any type other than $E_6$, $E_7$, $E_8$. We use our results to conclude that certain Artin groups contain hyperbolic surface subgroups, answering questions of Gordon, Long and Reid.
Let W be a Weyl group whose type is a simply laced Dynkin diagram. On several W-orbits of sets of mutually commuting reflections, a poset is described which plays a role in linear representatons of the corresponding Artin group A. The poset generaliz es many properties of the usual order on positive roots of W given by height. In this paper, a linear representation of the positive monoid of A is defined by use of the poset.
103 - Thomas Haettel 2015
We give a conjectural classification of virtually cocompactly cubulated Artin-Tits groups (i.e. having a finite index subgroup acting geometrically on a CAT(0) cube complex), which we prove for all Artin-Tits groups of spherical type, FC type or two- dimensional type. A particular case is that for $n geq 4$, the $n$-strand braid group is not virtually cocompactly cubulated.
We consider the question of which right-angled Artin groups contain closed hyperbolic surface subgroups. It is known that a right-angled Artin group $A(K)$ has such a subgroup if its defining graph $K$ contains an $n$-hole (i.e. an induced cycle of l ength $n$) with $ngeq 5$. We construct another eight forbidden graphs and show that every graph $K$ on $le 8$ vertices either contains one of our examples, or contains a hole of length $ge 5$, or has the property that $A(K)$ does not contain hyperbolic closed surface subgroups. We also provide several sufficient conditions for a RAAG to contain no hyperbolic surface subgroups. We prove that for one of these forbidden subgraphs $P_2(6)$, the right angled Artin group $A(P_2(6))$ is a subgroup of a (right angled Artin) diagram group. Thus we show that a diagram group can contain a non-free hyperbolic subgroup answering a question of Guba and Sapir. We also show that fundamental groups of non-orientable surfaces can be subgroups of diagram groups. Thus the first integral homology of a subgroup of a diagram group can have torsion (all homology groups of all diagram groups are free Abelian by a result of Guba and Sapir).
163 - Rachael Boyd 2018
We prove that certain sequences of Artin monoids containing the braid monoid as a submonoid satisfy homological stability. When the $K(pi,1)$ conjecture holds for the associated family of Artin groups this establishes homological stability for these groups. In particular, this recovers and extends Arnolds proof of stability for the Artin groups of type $A$, $B$ and $D$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا