ترغب بنشر مسار تعليمي؟ اضغط هنا

Augmentation adversarial training for self-supervised speaker recognition

162   0   0.0 ( 0 )
 نشر من قبل Joon Son Chung
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of this work is to train robust speaker recognition models without speaker labels. Recent works on unsupervised speaker representations are based on contrastive learning in which they encourage within-utterance embeddings to be similar and across-utterance embeddings to be dissimilar. However, since the within-utterance segments share the same acoustic characteristics, it is difficult to separate the speaker information from the channel information. To this end, we propose augmentation adversarial training strategy that trains the network to be discriminative for the speaker information, while invariant to the augmentation applied. Since the augmentation simulates the acoustic characteristics, training the network to be invariant to augmentation also encourages the network to be invariant to the channel information in general. Extensive experiments on the VoxCeleb and VOiCES datasets show significant improvements over previous works using self-supervision, and the performance of our self-supervised models far exceed that of humans.



قيم البحث

اقرأ أيضاً

In real-life applications, the performance of speaker recognition systems always degrades when there is a mismatch between training and evaluation data. Many domain adaptation methods have been successfully used for eliminating the domain mismatches in speaker recognition. However, usually both training and evaluation data themselves can be composed of several subsets. These inner variances of each dataset can also be considered as different domains. Different distributed subsets in source or target domain dataset can also cause multi-domain mismatches, which are influential to speaker recognition performance. In this study, we propose to use adversarial training for multi-domain speaker recognition to solve the domain mismatch and the dataset variance problems. By adopting the proposed method, we are able to obtain both multi-domain-invariant and speaker-discriminative speech representations for speaker recognition. Experimental results on DAC13 dataset indicate that the proposed method is not only effective to solve the multi-domain mismatch problem, but also outperforms the compared unsupervised domain adaptation methods.
This paper explores the use of adversarial examples in training speech recognition systems to increase robustness of deep neural network acoustic models. During training, the fast gradient sign method is used to generate adversarial examples augmenti ng the original training data. Different from conventional data augmentation based on data transformations, the examples are dynamically generated based on current acoustic model parameters. We assess the impact of adversarial data augmentation in experiments on the Aurora-4 and CHiME-4 single-channel tasks, showing improved robustness against noise and channel variation. Further improvement is obtained when combining adversarial examples with teacher/student training, leading to a 23% relative word error rate reduction on Aurora-4.
Deep learning is very data hungry, and supervised learning especially requires massive labeled data to work well. Machine listening research often suffers from limited labeled data problem, as human annotations are costly to acquire, and annotations for audio are time consuming and less intuitive. Besides, models learned from labeled dataset often embed biases specific to that particular dataset. Therefore, unsupervised learning techniques become popular approaches in solving machine listening problems. Particularly, a self-supervised learning technique utilizing reconstructions of multiple hand-crafted audio features has shown promising results when it is applied to speech domain such as emotion recognition and automatic speech recognition (ASR). In this paper, we apply self-supervised and multi-task learning methods for pre-training music encoders, and explore various design choices including encoder architectures, weighting mechanisms to combine losses from multiple tasks, and worker selections of pretext tasks. We investigate how these design choices interact with various downstream music classification tasks. We find that using various music specific workers altogether with weighting mechanisms to balance the losses during pre-training helps improve and generalize to the downstream tasks.
The recently proposed self-attentive pooling (SAP) has shown good performance in several speaker recognition systems. In SAP systems, the context vector is trained end-to-end together with the feature extractor, where the role of context vector is to select the most discriminative frames for speaker recognition. However, the SAP underperforms compared to the temporal average pooling (TAP) baseline in some settings, which implies that the attention is not learnt effectively in end-to-end training. To tackle this problem, we introduce strategies for training the attention mechanism in a supervised manner, which learns the context vector using classified samples. With our proposed methods, context vector can be boosted to select the most informative frames. We show that our method outperforms existing methods in various experimental settings including short utterance speaker recognition, and achieves competitive performance over the existing baselines on the VoxCeleb datasets.
205 - Haibin Wu , Po-chun Hsu , Ji Gao 2021
Automatic speaker verification (ASV), one of the most important technology for biometric identification, has been widely adopted in security-critical applications, including transaction authentication and access control. However, previous work has sh own that ASV is seriously vulnerable to recently emerged adversarial attacks, yet effective countermeasures against them are limited. In this paper, we adopt neural vocoders to spot adversarial samples for ASV. We use the neural vocoder to re-synthesize audio and find that the difference between the ASV scores for the original and re-synthesized audio is a good indicator for discrimination between genuine and adversarial samples. This effort is, to the best of our knowledge, among the first to pursue such a technical direction for detecting adversarial samples for ASV, and hence there is a lack of established baselines for comparison. Consequently, we implement the Griffin-Lim algorithm as the detection baseline. The proposed approach achieves effective detection performance that outperforms all the baselines in all the settings. We also show that the neural vocoder adopted in the detection framework is dataset-independent. Our codes will be made open-source for future works to do comparison.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا