ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum differentially private sparse regression learning

123   0   0.0 ( 0 )
 نشر من قبل Min-Hsiu Hsieh
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Differentially private (DP) learning, which aims to accurately extract patterns from the given dataset without exposing individual information, is an important subfield in machine learning and has been extensively explored. However, quantum algorithms that could preserve privacy, while outperform their classical counterparts, are still lacking. The difficulty arises from the distinct priorities in DP and quantum machine learning, i.e., the former concerns a low utility bound while the latter pursues a low runtime cost. These varied goals request that the proposed quantum DP algorithm should achieve the runtime speedup over the best known classical results while preserving the optimal utility bound. The Lasso estimator is broadly employed to tackle the high dimensional sparse linear regression tasks. The main contribution of this paper is devising a quantum DP Lasso estimator to earn the runtime speedup with the privacy preservation, i.e., the runtime complexity is $tilde{O}(N^{3/2}sqrt{d})$ with a nearly optimal utility bound $tilde{O}(1/N^{2/3})$, where $N$ is the sample size and $d$ is the data dimension with $Nll d$. Since the optimal classical (private) Lasso takes $Omega(N+d)$ runtime, our proposal achieves quantum speedups when $N<O(d^{1/3})$. There are two key components in our algorithm. First, we extend the Frank-Wolfe algorithm from the classical Lasso to the quantum scenario, {where the proposed quantum non-private Lasso achieves a quadratic runtime speedup over the optimal classical Lasso.} Second, we develop an adaptive privacy mechanism to ensure the privacy guarantee of the non-private Lasso. Our proposal opens an avenue to design various learning tasks with both the proven runtime speedups and the privacy preservation.



قيم البحث

اقرأ أيضاً

Economics and social science research often require analyzing datasets of sensitive personal information at fine granularity, with models fit to small subsets of the data. Unfortunately, such fine-grained analysis can easily reveal sensitive individu al information. We study algorithms for simple linear regression that satisfy differential privacy, a constraint which guarantees that an algorithms output reveals little about any individual input data record, even to an attacker with arbitrary side information about the dataset. We consider the design of differentially private algorithms for simple linear regression for small datasets, with tens to hundreds of datapoints, which is a particularly challenging regime for differential privacy. Focusing on a particular application to small-area analysis in economics research, we study the performance of a spectrum of algorithms we adapt to the setting. We identify key factors that affect their performance, showing through a range of experiments that algorithms based on robust estimators (in particular, the Theil-Sen estimator) perform well on the smallest datasets, but that other more standard algorithms do better as the dataset size increases.
Learning an unknown $n$-qubit quantum state $rho$ is a fundamental challenge in quantum computing. Information-theoretically, it is known that tomography requires exponential in $n$ many copies of $rho$ to estimate it up to trace distance. Motivated by computational learning theory, Aaronson et al. introduced many (weaker) learning models: the PAC model of learning states (Proceedings of Royal Society A07), shadow tomography (STOC18) for learning shadows of a state, a model that also requires learners to be differentially private (STOC19) and the online model of learning states (NeurIPS18). In these models it was shown that an unknown state can be learned approximately using linear-in-$n$ many copies of rho. But is there any relationship between these models? In this paper we prove a sequence of (information-theoretic) implications from differentially-private PAC learning, to communication complexity, to online learning and then to quantum stability. Our main result generalizes the recent work of Bun, Livni and Moran (Journal of the ACM21) who showed that finite Littlestone dimension (of Boolean-valued concept classes) implies PAC learnability in the (approximate) differentially private (DP) setting. We first consider their work in the real-valued setting and further extend their techniques to the setting of learning quantum states. Key to our results is our generic quantum online learner, Robust Standard Optimal Algorithm (RSOA), which is robust to adversarial imprecision. We then show information-theoretic implications between DP learning quantum states in the PAC model, learnability of quantum states in the one-way communication model, online learning of quantum states, quantum stability (which is our conceptual contribution), various combinatorial parameters and give further applications to gentle shadow tomography and noisy quantum state learning.
336 - Lei Yu , Ling Liu , Calton Pu 2019
Deep learning techniques based on neural networks have shown significant success in a wide range of AI tasks. Large-scale training datasets are one of the critical factors for their success. However, when the training datasets are crowdsourced from i ndividuals and contain sensitive information, the model parameters may encode private information and bear the risks of privacy leakage. The recent growing trend of the sharing and publishing of pre-trained models further aggravates such privacy risks. To tackle this problem, we propose a differentially private approach for training neural networks. Our approach includes several new techniques for optimizing both privacy loss and model accuracy. We employ a generalization of differential privacy called concentrated differential privacy(CDP), with both a formal and refined privacy loss analysis on two different data batching methods. We implement a dynamic privacy budget allocator over the course of training to improve model accuracy. Extensive experiments demonstrate that our approach effectively improves privacy loss accounting, training efficiency and model quality under a given privacy budget.
Broad adoption of machine learning techniques has increased privacy concerns for models trained on sensitive data such as medical records. Existing techniques for training differentially private (DP) models give rigorous privacy guarantees, but apply ing these techniques to neural networks can severely degrade model performance. This performance reduction is an obstacle to deploying private models in the real world. In this work, we improve the performance of DP models by fine-tuning them through active learning on public data. We introduce two new techniques - DIVERSEPUBLIC and NEARPRIVATE - for doing this fine-tuning in a privacy-aware way. For the MNIST and SVHN datasets, these techniques improve state-of-the-art accuracy for DP models while retaining privacy guarantees.
Large data collections required for the training of neural networks often contain sensitive information such as the medical histories of patients, and the privacy of the training data must be preserved. In this paper, we introduce a dropout technique that provides an elegant Bayesian interpretation to dropout, and show that the intrinsic noise added, with the primary goal of regularization, can be exploited to obtain a degree of differential privacy. The iterative nature of training neural networks presents a challenge for privacy-preserving estimation since multiple iterations increase the amount of noise added. We overcome this by using a relaxed notion of differential privacy, called concentrated differential privacy, which provides tighter estimates on the overall privacy loss. We demonstrate the accuracy of our privacy-preserving dropout algorithm on benchmark datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا