ﻻ يوجد ملخص باللغة العربية
We analyze the linear stability of the base state of the problem of coupled flow and deformation in a long and shallow rectangular soft hydraulic conduit with a thick top wall. Specifically, the steady base state is computed at low but finite Reynolds number. Then, we show that with the upstream flux fixed and the outlet pressure set to gauge, the flow is linearly stable to infinitesimal flow-wise perturbations. Multiple oscillatory but stable eigenmodes are computed in a range of the reduced Reynolds number, $hat{Re}$, and the so-called fluid--structure interaction (FSI) parameter, $lambda$, indicating the stiffness of this FSI system. These results provide a framework to address, in future work, the individual effects of various aspects of two-way FSI coupling on instability and flow transition in soft hydraulic conduits.
We develop a one-dimensional model for the unsteady fluid--structure interaction (FSI) between a soft-walled microchannel and viscous fluid flow within it. A beam equation, which accounts for both transverse bending rigidity and nonlinear axial tensi
Soft hydraulics, which addresses the interaction between an internal flow and a compliant conduit, is a central problem in microfluidics. We analyze Newtonian fluid flow in a rectangular duct with a soft top wall at steady state. The resulting fluid-
Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds number, R, keeping fixed a strongly stable, volume-mean density stratification. At smaller values of R, the turbulent velocity is mainly horizontal, a
We design and simulate the motion of a new swimmer, the {it Quadroar}, with three dimensional translation and reorientation capabilities in low Reynolds number conditions. The Quadroar is composed of an $texttt{I}$-shaped frame whose body link is a s
The 1D hydrostatic base state of electroconvection driven by unipolar charge injection between two parallel electrodes is investigated using a finite difference method. A boundary layer near the anode surface is derived analytically. The computationa