ﻻ يوجد ملخص باللغة العربية
Finding a ground state of a given Hamiltonian on a graph $G=(V,E)$ is an important but hard problem. One of the potential methods is to use a Markov chain Monte Carlo to sample the Gibbs distribution whose highest peaks correspond to the ground states. In this short paper, we investigate the stochastic cellular automata, in which all spins are updated independently and simultaneously. We prove that (i) if the temperature is sufficiently high and fixed, then the mixing time is at most of order $log|V|$, and that (ii) if the temperature drops in time $n$ as $1/log n$, then the limiting measure is uniformly distributed over the ground states.
Finding a ground state of a given Hamiltonian is an important but hard problem. One of the potential methods is to use a Markov chain Monte Carlo (MCMC) to sample the Gibbs distribution whose highest peaks correspond to the ground states. In this sho
There exists an index theory to classify strictly local quantum cellular automata in one dimension. We consider two classification questions. First, we study to what extent this index theory can be applied in higher dimensions via dimensional reducti
We consider the group structure of quantum cellular automata (QCA) modulo circuits and show that it is abelian even without assuming the presence of ancillas, at least for most reasonable choices of control space; this is a corollary of a general met
We study matrix product unitary operators (MPUs) for fermionic one-dimensional (1D) chains. In stark contrast with the case of 1D qudit systems, we show that (i) fermionic MPUs do not necessarily feature a strict causal cone and (ii) not all fermioni
For critical bond-percolation on high-dimensional torus, this paper proves sharp lower bounds on the size of the largest cluster, removing a logarithmic correction in the lower bound in Heydenreich and van der Hofstad (2007). This improvement finally